California mice (Peromyscus californicus) adjust mouth movements for vocal production during early postnatal development

Abbs JH, Gracco VL. Control of complex motor gestures: orofacial muscle responses to load perturbations of lip during speech. J Neurophysiol. 1984;51(4):705–23.

Article  PubMed  Google Scholar 

Smith A. Development of neural control of orofacial movements for speech. The handbook of phonetic sciences. 2010;2:251–96.

Brown S, Yuan Y, Belyk M. Evolution of the speech-ready brain: The voice/jaw connection in the human motor cortex. J Comp Neurol. 2021;529:1018–28.

Article  PubMed  Google Scholar 

Yunusova Y, Weismer G, Westbury JR, Lindstrom MJ. Articulatory movements during vowels in speakers with dysarthria and healthy controls. J Speech Lang Hear Res. 2008;51(3):596–611.

Article  PubMed  Google Scholar 

Levy ES, Moya-Galé G. Revisiting dysarthria treatment across languages: The hybrid approach. J Speech Lang Hear Res. 2023;67(9):1–10.

Google Scholar 

Hauser MD, Evans CS, Marler P. The role of articulation in the production of rhesus monkey, Macaca mulatta, vocalizations. Anim Behav. 1993;45(3):423–33.

Article  Google Scholar 

Bergman TJ. Speech-like vocalized lip-smacking in geladas. Curr Biol. 2013;23(7):R268–9.

Article  PubMed  Google Scholar 

Risueno-Segovia C, Hage SR. Theta synchronization of phonatory and articulatory systems in marmoset monkey vocal production. Curr Biol. 2020;30:4276–83.

Article  PubMed  Google Scholar 

Kounitsky P, Rydell J, Amichai E, Boonman A, Eitan O, Weiss AJ, Yovel Y. Bats adjust their mouth gape to zoom their biosonar field of view. Proc Natl Acad Sci. 2015;112(21):6724–9.

Article  PubMed  PubMed Central  Google Scholar 

Fraser D. Vocalizations of isolated piglets. I. Sources of variation and relationships among measures. Appl Anim Ethol. 1975;1(4):387–94.

Shorten PR, Hunter LB. Acoustic sensors for automated detection of cow vocalization duration and type. Comput Electron Agric. 2023;208:107760.

Article  Google Scholar 

Podos J, Sherer JK, Peters S, Nowicki S. Ontogeny of vocal tract movements during song production in song sparrows. Anim Behav. 1995;50(5):1287–96.

Article  Google Scholar 

Goller F, Mallinckrodt MJ, Torti SD. Beak gape dynamics during song in the zebra finch. J Neurobiol. 2004;59(3):289–303.

Article  PubMed  Google Scholar 

Riede T, Suthers RA, Fletcher NH, Blevins WE. Songbirds tune their vocal tract to the fundamental frequency of their song. Proc Natl Acad Sci. 2006;103(14):5543–8.

Article  PubMed  PubMed Central  Google Scholar 

Faiß M, Riede T, Goller F. Tonality over a broad frequency range is linked to vocal learning in birds. Proc R Soc B. 1982;2022(289):20220792.

Google Scholar 

Martin WF, Gans C. Muscular control of the vocal tract during release signaling in the toad Bufo valliceps. J Morphol. 1972;137(1):1–27.

Article  PubMed  Google Scholar 

Gridi-Papp M. The structure of vocal sounds produced with the mouth closed or with the mouth open in treefrogs. J Acoust Soc Am. 2008;123(5):2895–902.

Article  PubMed  Google Scholar 

Cox PG, Hautier L, editors. Evolution of the rodents: Advances in Phylogeny, Functional morphology and Development, vol. 5. Cambridge: Cambridge University Press; 2015.

Google Scholar 

Dent ML, Popper AN, Fay RR, editors. Rodent bioacoustics. Vol. 67, Springer Handbook of Auditory Research. Cham: Springer; 2010. p. 71–105.

Burgin CJ, Colella JP, Kahn PL, Upham NS. How many species of mammals are there? J Mammal. 2018;99:1–14.

Article  Google Scholar 

Mooney R. The neurobiology of innate and learned vocalizations in rodents and songbirds. Curr Opin Neurobiol. 2020;64:24–31.

Article  PubMed  PubMed Central  Google Scholar 

Fernández-Vargas M, Riede T, Pasch B. Mechanisms and constraints underlying acoustic variation in rodents. Anim Behav. 2022;184:135–47.

Article  Google Scholar 

Roberts LH. The rodent ultrasound production mechanism. Ultrasonics. 1975;13(2):83–8.

Article  PubMed  Google Scholar 

Riede T. Subglottal pressure, tracheal airflow, and intrinsic laryngeal muscle activity during rat ultrasound vocalization. J Neurophysiol. 2011;106(5):2580–92.

Article  PubMed  PubMed Central  Google Scholar 

Riede T. Stereotypic laryngeal and respiratory motor patterns generate different call types in rat ultrasound vocalization. J Exp Zool A Ecol Genet Physiol. 2013;319(4):213–24.

Article  PubMed  PubMed Central  Google Scholar 

Cox PG, Rayfield EJ, Fagan MJ, Herrel A, Pataky TC, Jeffery N. Functional evolution of the feeding system in rodents. PLoS ONE. 2012;7(4):e36299.

Article  PubMed  PubMed Central  Google Scholar 

Zelditch ML, Wood AR, Bonett RM, Swiderski DL. Modularity of the rodent mandible: integrating bones, muscles, and teeth. Evol Dev. 2008;10(6):756–68.

Article  PubMed  Google Scholar 

Williams SH, Peiffer E, Ford S. Gape and bite force in the rodents Onychomys leucogaster and Peromyscus maniculatus: Does jaw-muscle anatomy predict performance? J Morphol. 2009;270(11):1338–47.

Article  PubMed  Google Scholar 

Titze IR. Principles of voice production. NCVS; 2000.

Fletcher NH. A simple frequency-scaling rule for animal communication. J Acoust Soc Am. 2004;115(5):2334–8.

Article  PubMed  Google Scholar 

Titze IR, Palaparthi A. Radiation efficiency for long-range vocal communication in mammals and birds. J Acoust Soc Am. 2018;143:2813–24.

Article  PubMed  PubMed Central  Google Scholar 

Brzozowski R, Kobrina A, Mahoney SM, Pasch B. Advertising and receiving from heights increases transmission of vocalizations in semi-arboreal mice. Behav Ecol Sociobiol. 2023;77(7):1–10.

Article  Google Scholar 

Ryan MJ, Kime NM. Selection on long-distance acoustic signals. In: Simmons AM, Fay RR, Popper AN, editors. Acoustic Communication. Springer: New York; 2003. p. 225–74.

Chapter  Google Scholar 

Ribble DO, Salvioni M. Social organization and nest cooccupancy in Peromyscus californicus, a monogamous rodent. Behav Ecol Sociobiol. 1990;26:9–15.

Article  Google Scholar 

Ribble DO. The evolution of social and reproductive monogamy in Peromyscus, evidence from Peromyscus californicus (the California mouse). In: Reichard U, Boesh C, editors. Monogamy: Mating Strategies and Partnerships in Birds, Humans, and Other Mammals. Cambridge University Press; 2003. p. 81–92.

Chapter  Google Scholar 

Kalcounis-Rueppell MC, Pultorak JD, Blake BH, Marler CA. Ultrasonic vocalizations of young mice in the genus Peromyscus. In: Handbook of Behavioral Neuroscience. Vol. 25, pp. 149–156. Elsevier; 2018.

Rieger NS, Marler CA. The function of ultrasonic vocalizations during territorial defense by pair-bonded male and female California mice. Anim Behav. 2018;135:97–108.

Article  Google Scholar 

Riede T, Kobrina A, Bone L, Darwaiz T, Pasch B. Mechanisms of sound production in deer mice (Peromyscus spp.). J Exp Biol. 2022;225(9):jeb243695.

Johnson SA, Painter MS, Javurek AB, Murphy CR, Howald EC, Khan ZZ, et al. Characterization of vocalizations emitted in isolation by California mouse (Peromyscus californicus) pups throughout the postnatal period. J Comp Psychol. 2017;131(1):30.

Article  PubMed  PubMed Central  Google Scholar 

Jourjine N, Woolfolk ML, Sanguinetti-Scheck JI, Sabatini JE, McFadden S, Lindholm AK, et al. Two pup vocalization types are genetically and functionally separable in deer mice. Curr Biol. 2023;33:1237–48.

Article  PubMed  Google Scholar 

Ziobro P, Woo Y, He Z, Tschida K. Midbrain neurons important for the production of mouse ultrasonic vocalizations are not required for distress calls. Curr Biol. 2024;34:1107–13.

Article  PubMed  Google Scholar 

Lendvai B, Stern EA, Chen B, Svoboda K. Experience-dependent plasticity of dendritic spines in the developing rat barrel cortex in vivo. Nature. 2000;404(6780):876–81.

Article  PubMed  Google Scholar 

Gracco VL. Timing factors in the coordination of speech movements. J Neurosci. 1988;8(12):4628–39.

Article  PubMed  PubMed Central  Google Scholar 

Green JR, Moore CA, Reilly KJ. The sequential development of jaw and lip control for speech. J Speech Lang Hear Res. 2002;45:66–79.

Article  PubMed 

留言 (0)

沒有登入
gif