CHMP2B promotes CHMP7 mediated nuclear pore complex injury in sporadic ALS

Adam SA (2016) Nuclear Protein Transport in Digitonin Permeabilized cells. Methods Mol Biol 1411:479–487. https://doi.org/10.1007/978-1-4939-3530-7_29

Article  CAS  PubMed  Google Scholar 

Ader NR, Chen L, Surovtsev IV, Chadwick WL, Rodriguez EC, King MC, Lusk CP (2023) An ESCRT grommet cooperates with a diffusion barrier to maintain nuclear integrity. Nat Cell Biol 25:1465–1477. https://doi.org/10.1038/s41556-023-01235-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Al-Azzam N, To JH, Gautam V, Street LA, Nguyen CB, Naritomi JT, Lam DC, Madrigal AA, Lee B, Jin W (2024) al Inhibition of RNA splicing triggers CHMP7 nuclear entry, impacting TDP-43 function and leading to the onset of ALS cellular phenotypes. Neuron: https://doi.org/10.1016/j.neuron.2024.10.007

Amador-Ortiz C, Lin WL, Ahmed Z, Personett D, Davies P, Duara R, Graff-Radford NR, Hutton ML, Dickson DW (2007) TDP-43 immunoreactivity in hippocampal sclerosis and Alzheimer’s disease. Ann Neurol 61:435–445. https://doi.org/10.1002/ana.21154

Article  CAS  PubMed  PubMed Central  Google Scholar 

Baskerville V, Rapuri S, Mehlhop E, Coyne AN (2023) SUN1 facilitates CHMP7 nuclear influx and injury cascades in sporadic amyotrophic lateral sclerosis. Brain: https://doi.org/10.1093/brain/awad291

Baxi EG, Thompson T, Li J, Kaye JA, Lim RG, Wu J, Ramamoorthy D, Lima L, Vaibhav V, Matlock Aet al et al (2022) Answer ALS, a large-scale resource for sporadic and familial ALS combining clinical and multi-omics data from induced pluripotent cell lines. Nat Neurosci 25:226–237. https://doi.org/10.1038/s41593-021-01006-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Beck M, Hurt E (2017) The nuclear pore complex: understanding its function through structural insight. Nat Rev Mol Cell Biol 18:73–89. https://doi.org/10.1038/nrm.2016.147

Article  CAS  PubMed  Google Scholar 

Bley CJ, Nie S, Mobbs GW, Petrovic S, Gres AT, Liu X, Mukherjee S, Harvey S, Huber FM, Lin DH et al (2022) Architecture of the cytoplasmic face of the nuclear pore. Science 376: eabm9129 https://doi.org/10.1126/science.abm9129

Bodansky A, Kim JM, Tempest L, Velagapudi A, Libby R, Ravits J (2010) TDP-43 and ubiquitinated cytoplasmic aggregates in sporadic ALS are low frequency and widely distributed in the lower motor neuron columns independent of disease spread. Amyotroph Lateral Scler 11:321–327. https://doi.org/10.3109/17482961003602363

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brown AL, Wilkins OG, Keuss MJ, Hill SE, Zanovello M, Lee WC, Bampton A, Lee FCY, Masino L, Qi YA al (2022) TDP-43 loss and ALS-risk SNPs drive mis-splicing and depletion of UNC13A. Nature 603:131–137. https://doi.org/10.1038/s41586-022-04436-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Buchwalter A, Kaneshiro JM, Hetzer MW (2019) Coaching from the sidelines: the nuclear periphery in genome regulation. Nat Rev Genet 20:39–50. https://doi.org/10.1038/s41576-018-0063-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Caillat C, Macheboeuf P, Wu Y, McCarthy AA, Boeri-Erba E, Effantin G, Göttlinger HG, Weissenhorn W, Renesto P (2015) Asymmetric ring structure of Vps4 required for ESCRT-III disassembly. Nat Commun 6:8781. https://doi.org/10.1038/ncomms9781

Article  CAS  PubMed  Google Scholar 

Capelson M, Hetzer MW (2009) The role of nuclear pores in gene regulation, development and disease. EMBO Rep 10:697–705. https://doi.org/10.1038/embor.2009.147

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chassefeyre R, Martínez-Hernández J, Bertaso F, Bouquier N, Blot B, Laporte M, Fraboulet S, Couté Y, Devoy A, Isaacs AM al (2015) Regulation of postsynaptic function by the dementia-related ESCRT-III subunit CHMP2B. J Neurosci 35:3155–3173. https://doi.org/10.1523/jneurosci.0586-14.2015

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen-Plotkin AS, Lee VM, Trojanowski JQ (2010) TAR DNA-binding protein 43 in neurodegenerative disease. Nat Rev Neurol 6:211–220. https://doi.org/10.1038/nrneurol.2010.18

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chou CC, Zhang Y, Umoh ME, Vaughan SW, Lorenzini I, Liu F, Sayegh M, Donlin-Asp PG, Chen YH, Duong DM et al (2018) TDP-43 pathology disrupts nuclear pore complexes and nucleocytoplasmic transport in ALS/FTD. Nat Neurosci 21: 228–239 https://doi.org/10.1038/s41593-017-0047-3

Clayton EL, Bonnycastle K, Isaacs AM, Cousin MA, Schorge S (2022) A novel synaptopathy-defective synaptic vesicle protein trafficking in the mutant CHMP2B mouse model of frontotemporal dementia. J Neurochem 160:412–425. https://doi.org/10.1111/jnc.15551

Article  CAS  PubMed  Google Scholar 

Clayton EL, Mizielinska S, Edgar JR, Nielsen TT, Marshall S, Norona FE, Robbins M, Damirji H, Holm IE Johannsen P (2015) frontotemporal dementia caused by CHMP2B mutation is characterised by neuronal lysosomal storage pathology. Acta Neuropathol 130: 511–523 https://doi.org/10.1007/s00401-015-1475-3

Cox LE, Ferraiuolo L, Goodall EF, Heath PR, Higginbottom A, Mortiboys H, Hollinger HC, Hartley JA, Brockington A, Burness CE al (2010) Mutations in CHMP2B in lower motor neuron predominant amyotrophic lateral sclerosis (ALS). PLoS ONE 5:e9872. https://doi.org/10.1371/journal.pone.0009872

Article  CAS  PubMed  PubMed Central  Google Scholar 

Coyne AN, Rothstein JD (2021) The ESCRT-III protein VPS4, but not CHMP4B or CHMP2B, is pathologically increased in familial and sporadic ALS neuronal nuclei. Acta Neuropathol Commun 9:127. https://doi.org/10.1186/s40478-021-01228-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Coyne AN, Rothstein JD (2022) Nuclear pore complexes - a doorway to neural injury in neurodegeneration. Nat Rev Neurol: Doi. https://doi.org/10.1038/s41582-022-00653-6

Article  Google Scholar 

Coyne AN, Zaepfel BL, Hayes L, Fitchman B, Salzberg Y, Luo EC, Bowen K, Trost H, Aigner S, Rigo F (2020) al G(4)C(2) Repeat RNA Initiates a POM121-Mediated Reduction in Specific Nucleoporins in C9orf72 ALS/FTD. Neuron: https://doi.org/10.1016/j.neuron.2020.06.027

Coyne AN, Baskerville V, Zaepfel BL, Dickson DW, Rigo F, Bennett F, Lusk CP, Rothstein JD (2021) Nuclear accumulation of CHMP7 initiates nuclear pore complex injury and subsequent TDP-43 dysfunction in sporadic and familial ALS. Sci Transl Med 13. https://doi.org/10.1126/scitranslmed.abe1923

Davies BA, Azmi IF, Payne J, Shestakova A, Horazdovsky BF, Babst M, Katzmann DJ (2010) Coordination of substrate binding and ATP hydrolysis in Vps4-mediated ESCRT-III disassembly. Mol Biol Cell 21:3396–3408. https://doi.org/10.1091/mbc.E10-06-0512

Article  CAS  PubMed  PubMed Central  Google Scholar 

de Boer EMJ, Orie VK, Williams T, Baker MR, De Oliveira HM, Polvikoski T, Silsby M, Menon P, van den Bos M Halliday GM (2020) TDP-43 proteinopathies: a new wave of neurodegenerative diseases. J Neurol Neurosurg Psychiatry 92: 86–95 https://doi.org/10.1136/jnnp-2020-322983

Denais CM, Gilbert RM, Isermann P, McGregor AL, te Lindert M, Weigelin B, Davidson PM, Friedl P, Wolf K, Lammerding J (2016) Nuclear envelope rupture and repair during cancer cell migration. Science 352:353–358. https://doi.org/10.1126/science.aad7297

Article  CAS  PubMed  PubMed Central  Google Scholar 

Deng X, Sun X, Yue W, Duan Y, Hu R, Zhang K, Ni J, Cui J, Wang Q, Chen Y al (2022) CHMP2B regulates TDP-43 phosphorylation and cytotoxicity independent of autophagy via CK1. J Cell Biol 221. https://doi.org/10.1083/jcb.202103033

Donnelly CJ, Zhang PW, Pham JT, Haeusler AR, Mistry NA, Vidensky S, Daley EL, Poth EM, Hoover B, Fines DM al (2013) RNA toxicity from the ALS/FTD C9ORF72 expansion is mitigated by antisense intervention. Neuron 80:415–428. https://doi.org/10.1016/j.neuron.2013.10.015

Article  CAS  PubMed  PubMed Central  Google Scholar 

Freibaum BD, Lu Y, Lopez-Gonzalez R, Kim NC, Almeida S, Lee KH, Badders N, Valentine M, Miller BL, Wong PC al (2015) GGGGCC repeat expansion in C9orf72 compromises nucleocytoplasmic transport. Nature 525:129–133. https://doi.org/10.1038/nature14974

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gatta AT, Olmos Y, Stoten CL, Chen Q, Rosenthal PB, Carlton JG (2021) CDK1 controls CHMP7-dependent nuclear envelope reformation. Elife 10. https://doi.org/10.7554/eLife.59999

Geser F, Martinez-Lage M, Kwong LK, Lee VM, Trojanowski JQ (2009) Amyotrophic lateral sclerosis, frontotemporal dementia and beyond: the TDP-43 diseases. J Neurol 256:1205–1214. https://doi.org/10.1007/s00415-009-5069-7

Article  PubMed  PubMed Central  Google Scholar 

Ghasemi M, Brown RH Jr (2018) Genetics of Amyotrophic lateral sclerosis. Cold Spring Harb Perspect Med 8. https://doi.org/10.1101/cshperspect.a024125

Ghazi-Noori S, Froud KE, Mizielinska S, Powell C, Smidak M, Fernandez de Marco M, O’Malley C, Farmer M, Parkinson N, Fisher EM et al (2012) Progressive neuronal inclusion formation and axonal degeneration in CHMP2B mutant transgenic mice. Brain 135: 819–832 https://doi.org/10.1093/brain/aws006

Giampetruzzi A, Danielson EW, Gumina V, Jeon M, Boopathy S, Brown RH, Ratti A, Landers JE, Fallini C (2019) Modulation of actin polymerization affects nucleocytoplasmic transport in multiple forms of amyotrophic lateral sclerosis. Nat Commun 10:3827. https://doi.org/10.1038/s41467-019-11837-y

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif