Infante RE, Radhakrishnan A, Abi-Mosleh L, Kinch LN, Wang ML, Grishin NV, Goldstein JL, Brown MS. Purified NPC1 protein: II. Localization of sterol binding to a 240-amino acid soluble luminal loop. J Biol Chem. 2008;283(2):1064–75. https://doi.org/10.1074/jbc.M707944200.
Article CAS PubMed Google Scholar
Infante RE, Wang ML, Radhakrishnan A, Kwon HJ, Brown MS, Goldstein JL. NPC2 facilitates bidirectional transfer of cholesterol between NPC1 and lipid bilayers, a step in cholesterol egress from lysosomes. Proc Natl Acad Sci USA. 2008;105(40):15287–92. https://doi.org/10.1073/pnas.0807328105.
Article PubMed PubMed Central Google Scholar
Kwon HJ, Abi-Mosleh L, Wang ML, Deisenhofer J, Goldstein JL, Brown MS, Infante RE. Structure of N-terminal domain of NPC1 reveals distinct subdomains for binding and transfer of cholesterol. Cell. 2009;137(7):1213–24. https://doi.org/10.1016/j.cell.2009.03.049.
Article PubMed PubMed Central Google Scholar
Peake KB, Vance JE. Defective cholesterol trafficking in Niemann-Pick C-deficient cells. FEBS Lett. 2010;584(13):2731–9. https://doi.org/10.1016/j.febslet.2010.04.047.
Article CAS PubMed Google Scholar
Pentchev PG, Comly ME, Kruth HS, Vanier MT, Wenger DA, Patel S, Brady RO. A defect in cholesterol esterification in Niemann-Pick disease (type C) patients. Proc Natl Acad Sci USA. 1995;82(23):8247–51. https://doi.org/10.1073/pnas.82.23.8247.
Pentchev PG. Niemann-Pick C research from mouse to gene. Biochim Biophys Acta. 2004;1685(1–3):3–7. https://doi.org/10.1016/j.bbalip.2004.08.005.
Article CAS PubMed Google Scholar
Vanier MT. Niemann-Pick disease type C. Orphanet J Rare Dis. 2010;5:16. https://doi.org/10.1186/1750-1172-5-16.
Article PubMed PubMed Central Google Scholar
Fiorenza MT, Moro E, Erickson RP. The pathogenesis of lysosomal storage disorders: beyond the engorgement of lysosomes to abnormal development and neuroinflammation. Hum Mol Genet. 2018;27:R119–29. https://doi.org/10.1093/hmg/ddy155.
Article CAS PubMed Google Scholar
Oddi S, Caporali P, Dragotto J, Totaro A, Maiolati M, Scipioni L, Angelucci CB, Orsini C, Canterini S, Rapino C, Maccarrone M, Fiorenza MT. The endocannabinoid system is affected by cholesterol dyshomeostasis: Insights from a murine model of Niemann Pick type C disease. Neurobiol Dis. 2019;130: 104531. https://doi.org/10.1016/j.nbd.2019.104531.
Article CAS PubMed Google Scholar
Das A, Brown MS, Anderson DD, Goldstein JL, Radhakrishnan A. Three pools of plasma membrane cholesterol and their relation to cholesterol homeostasis. Elife. 2014;3: e02882. https://doi.org/10.7554/eLife.02882.
Article CAS PubMed PubMed Central Google Scholar
Simons K, Ikonen E. Functional rafts in cell membranes. Nature. 1997;387(6633):569–72. https://doi.org/10.1038/42408.
Article CAS PubMed Google Scholar
Lingwood D, Simons K. Lipid rafts as a membrane-organizing principle. Science. 2010;327(5961):46–50. https://doi.org/10.1126/science.1174621.
Article CAS PubMed Google Scholar
Glende J, Schwegmann-Wessels C, Al-Falah M, Pfefferle S, Qu X, Deng H, Drosten C, Naim HY, Herrler G. Importance of cholesterol-rich membrane microdomains in the interaction of the S protein of SARS-coronavirus with the cellular receptor angiotensin-converting enzyme 2. Virology. 2008;381(2):215–21. https://doi.org/10.1016/j.virol.2008.08.026.
Article CAS PubMed Google Scholar
Chen D, Zheng Q, Sun L, Ji M, Li Y, Deng H, Zhang H. ORF3a of SARS-CoV-2 promotes lysosomal exocytosis-mediated viral egress. Dev Cell. 2021;56(23):3250-3263.e5. https://doi.org/10.1016/j.devcel.2021.10.006.
Article CAS PubMed PubMed Central Google Scholar
Li GM, Li YG, Yamate M, Li SM, Ikuta K. Lipid rafts play an important role in the early stage of severe acute respiratory syndrome-coronavirus life cycle. Microbes Infect. 2007;9(1):96–102. https://doi.org/10.1016/j.micinf.2006.10.015. (Epub 2006 Dec 8).
Article CAS PubMed Google Scholar
Li X, Zhu W, Fan M, Zhang J, Peng Y, Huang F, Wang N, He L, Zhang L, Holmdahl R, Meng L, Lu S. Dependence of SARS-CoV-2 infection on cholesterol-rich lipid raft and endosomal acidification. Comput Struct Biotechnol J. 2021;19:1933–43. https://doi.org/10.1016/j.csbj.2021.04.001.PMID:33850607;PMCID:PMC8028701.
Article CAS PubMed PubMed Central Google Scholar
Lan J, Ge J, Yu J, Shan S, Zhou H, Fan S, Zhang Q, Shi X, Wang Q, Zhang L, Wang X. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature. 2020;581(7807):215–20. https://doi.org/10.1038/s41586-020-2180-5.
Article CAS PubMed Google Scholar
Shang J, Wan Y, Luo C, Ye G, Geng Q, Auerbach A, Li F. Cell entry mechanisms of SARS-CoV-2. Proc Natl Acad Sci USA. 2020;117(21):11727–34. https://doi.org/10.1073/pnas.2003138117.
Article CAS PubMed PubMed Central Google Scholar
Zhou L, Niu Z, Jiang X, Zhang Z, Zheng Y, Wang Z, Zhu Y, Gao L, Huang H, Wang X, Sun Q. SARS-CoV-2 targets by the pscRNA profiling of ACE2, TMPRSS2 and furin proteases. iScience. 2020;23(11): 101744. https://doi.org/10.1016/j.isci.2020.101744.
Article CAS PubMed PubMed Central Google Scholar
Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A, Müller MA, Drosten C, Pöhlmann S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181(2):271-280.e8. https://doi.org/10.1016/j.cell.2020.02.052.
Article PubMed PubMed Central Google Scholar
Reinke LM, Spiegel M, Plegge T, Hartleib A, Nehlmeier I, Gierer S, Hoffmann M, Hofmann-Winkler H, Winkler M, Pöhlmann S. Different residues in the SARS-CoV spike protein determine cleavage and activation by the host cell protease TMPRSS2. PLoS ONE. 2017;12(6): e0179177. https://doi.org/10.1371/journal.pone.0179177.
Article CAS PubMed PubMed Central Google Scholar
Hartenian E, Nandakumar D, Lari A, Ly M, Tucker JM, Glaunsinger BA. The molecular virology of coronaviruses. J Biol Chem. 2020;295(37):12910–34. https://doi.org/10.1074/jbc.REV120.013930.
Article CAS PubMed PubMed Central Google Scholar
Hoffmann M, Kleine-Weber H, Pöhlmann S. A multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells. Mol Cell. 2020;78(4):779-784.e5. https://doi.org/10.1016/j.molcel.2020.04.022.
Article CAS PubMed PubMed Central Google Scholar
Bayati A, Kumar R, Francis V, McPherson PS. SARS-CoV-2 infects cells after viral entry via clathrin-mediated endocytosis. J Biol Chem. 2021;296: 100306. https://doi.org/10.1016/j.jbc.2021.100306.
Article CAS PubMed PubMed Central Google Scholar
Peng R, Wu LA, Wang Q, Qi J, Gao GF. Cell entry by SARS-CoV-2. Trends Biochem Sci. 2021;46(10):848–60. https://doi.org/10.1016/j.tibs.2021.06.001.
Article CAS PubMed PubMed Central Google Scholar
Jackson CB, Farzan M, Chen B, Choe H. Mechanisms of SARS-CoV-2 entry into cells. Nat Rev Mol Cell Biol. 2022;23(1):3–20. https://doi.org/10.1038/s41580-021-00418-x.
留言 (0)