The inactivation of the Niemann Pick C1 cholesterol transporter restricts SARS-CoV-2 entry into host cells by decreasing ACE2 abundance at the plasma membrane

Infante RE, Radhakrishnan A, Abi-Mosleh L, Kinch LN, Wang ML, Grishin NV, Goldstein JL, Brown MS. Purified NPC1 protein: II. Localization of sterol binding to a 240-amino acid soluble luminal loop. J Biol Chem. 2008;283(2):1064–75. https://doi.org/10.1074/jbc.M707944200.

Article  CAS  PubMed  Google Scholar 

Infante RE, Wang ML, Radhakrishnan A, Kwon HJ, Brown MS, Goldstein JL. NPC2 facilitates bidirectional transfer of cholesterol between NPC1 and lipid bilayers, a step in cholesterol egress from lysosomes. Proc Natl Acad Sci USA. 2008;105(40):15287–92. https://doi.org/10.1073/pnas.0807328105.

Article  PubMed  PubMed Central  Google Scholar 

Kwon HJ, Abi-Mosleh L, Wang ML, Deisenhofer J, Goldstein JL, Brown MS, Infante RE. Structure of N-terminal domain of NPC1 reveals distinct subdomains for binding and transfer of cholesterol. Cell. 2009;137(7):1213–24. https://doi.org/10.1016/j.cell.2009.03.049.

Article  PubMed  PubMed Central  Google Scholar 

Peake KB, Vance JE. Defective cholesterol trafficking in Niemann-Pick C-deficient cells. FEBS Lett. 2010;584(13):2731–9. https://doi.org/10.1016/j.febslet.2010.04.047.

Article  CAS  PubMed  Google Scholar 

Pentchev PG, Comly ME, Kruth HS, Vanier MT, Wenger DA, Patel S, Brady RO. A defect in cholesterol esterification in Niemann-Pick disease (type C) patients. Proc Natl Acad Sci USA. 1995;82(23):8247–51. https://doi.org/10.1073/pnas.82.23.8247.

Article  Google Scholar 

Pentchev PG. Niemann-Pick C research from mouse to gene. Biochim Biophys Acta. 2004;1685(1–3):3–7. https://doi.org/10.1016/j.bbalip.2004.08.005.

Article  CAS  PubMed  Google Scholar 

Vanier MT. Niemann-Pick disease type C. Orphanet J Rare Dis. 2010;5:16. https://doi.org/10.1186/1750-1172-5-16.

Article  PubMed  PubMed Central  Google Scholar 

Fiorenza MT, Moro E, Erickson RP. The pathogenesis of lysosomal storage disorders: beyond the engorgement of lysosomes to abnormal development and neuroinflammation. Hum Mol Genet. 2018;27:R119–29. https://doi.org/10.1093/hmg/ddy155.

Article  CAS  PubMed  Google Scholar 

Oddi S, Caporali P, Dragotto J, Totaro A, Maiolati M, Scipioni L, Angelucci CB, Orsini C, Canterini S, Rapino C, Maccarrone M, Fiorenza MT. The endocannabinoid system is affected by cholesterol dyshomeostasis: Insights from a murine model of Niemann Pick type C disease. Neurobiol Dis. 2019;130: 104531. https://doi.org/10.1016/j.nbd.2019.104531.

Article  CAS  PubMed  Google Scholar 

Das A, Brown MS, Anderson DD, Goldstein JL, Radhakrishnan A. Three pools of plasma membrane cholesterol and their relation to cholesterol homeostasis. Elife. 2014;3: e02882. https://doi.org/10.7554/eLife.02882.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Simons K, Ikonen E. Functional rafts in cell membranes. Nature. 1997;387(6633):569–72. https://doi.org/10.1038/42408.

Article  CAS  PubMed  Google Scholar 

Lingwood D, Simons K. Lipid rafts as a membrane-organizing principle. Science. 2010;327(5961):46–50. https://doi.org/10.1126/science.1174621.

Article  CAS  PubMed  Google Scholar 

Glende J, Schwegmann-Wessels C, Al-Falah M, Pfefferle S, Qu X, Deng H, Drosten C, Naim HY, Herrler G. Importance of cholesterol-rich membrane microdomains in the interaction of the S protein of SARS-coronavirus with the cellular receptor angiotensin-converting enzyme 2. Virology. 2008;381(2):215–21. https://doi.org/10.1016/j.virol.2008.08.026.

Article  CAS  PubMed  Google Scholar 

Chen D, Zheng Q, Sun L, Ji M, Li Y, Deng H, Zhang H. ORF3a of SARS-CoV-2 promotes lysosomal exocytosis-mediated viral egress. Dev Cell. 2021;56(23):3250-3263.e5. https://doi.org/10.1016/j.devcel.2021.10.006.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li GM, Li YG, Yamate M, Li SM, Ikuta K. Lipid rafts play an important role in the early stage of severe acute respiratory syndrome-coronavirus life cycle. Microbes Infect. 2007;9(1):96–102. https://doi.org/10.1016/j.micinf.2006.10.015. (Epub 2006 Dec 8).

Article  CAS  PubMed  Google Scholar 

Li X, Zhu W, Fan M, Zhang J, Peng Y, Huang F, Wang N, He L, Zhang L, Holmdahl R, Meng L, Lu S. Dependence of SARS-CoV-2 infection on cholesterol-rich lipid raft and endosomal acidification. Comput Struct Biotechnol J. 2021;19:1933–43. https://doi.org/10.1016/j.csbj.2021.04.001.PMID:33850607;PMCID:PMC8028701.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lan J, Ge J, Yu J, Shan S, Zhou H, Fan S, Zhang Q, Shi X, Wang Q, Zhang L, Wang X. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature. 2020;581(7807):215–20. https://doi.org/10.1038/s41586-020-2180-5.

Article  CAS  PubMed  Google Scholar 

Shang J, Wan Y, Luo C, Ye G, Geng Q, Auerbach A, Li F. Cell entry mechanisms of SARS-CoV-2. Proc Natl Acad Sci USA. 2020;117(21):11727–34. https://doi.org/10.1073/pnas.2003138117.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou L, Niu Z, Jiang X, Zhang Z, Zheng Y, Wang Z, Zhu Y, Gao L, Huang H, Wang X, Sun Q. SARS-CoV-2 targets by the pscRNA profiling of ACE2, TMPRSS2 and furin proteases. iScience. 2020;23(11): 101744. https://doi.org/10.1016/j.isci.2020.101744.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A, Müller MA, Drosten C, Pöhlmann S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181(2):271-280.e8. https://doi.org/10.1016/j.cell.2020.02.052.

Article  PubMed  PubMed Central  Google Scholar 

Reinke LM, Spiegel M, Plegge T, Hartleib A, Nehlmeier I, Gierer S, Hoffmann M, Hofmann-Winkler H, Winkler M, Pöhlmann S. Different residues in the SARS-CoV spike protein determine cleavage and activation by the host cell protease TMPRSS2. PLoS ONE. 2017;12(6): e0179177. https://doi.org/10.1371/journal.pone.0179177.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hartenian E, Nandakumar D, Lari A, Ly M, Tucker JM, Glaunsinger BA. The molecular virology of coronaviruses. J Biol Chem. 2020;295(37):12910–34. https://doi.org/10.1074/jbc.REV120.013930.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hoffmann M, Kleine-Weber H, Pöhlmann S. A multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells. Mol Cell. 2020;78(4):779-784.e5. https://doi.org/10.1016/j.molcel.2020.04.022.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bayati A, Kumar R, Francis V, McPherson PS. SARS-CoV-2 infects cells after viral entry via clathrin-mediated endocytosis. J Biol Chem. 2021;296: 100306. https://doi.org/10.1016/j.jbc.2021.100306.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Peng R, Wu LA, Wang Q, Qi J, Gao GF. Cell entry by SARS-CoV-2. Trends Biochem Sci. 2021;46(10):848–60. https://doi.org/10.1016/j.tibs.2021.06.001.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jackson CB, Farzan M, Chen B, Choe H. Mechanisms of SARS-CoV-2 entry into cells. Nat Rev Mol Cell Biol. 2022;23(1):3–20. https://doi.org/10.1038/s41580-021-00418-x.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif