Leveraging artificial intelligence and machine learning to accelerate discovery of disease-modifying therapies in type 1 diabetes

Sims EK, Bundy BN, Stier K et al (2021) Teplizumab improves and stabilizes beta cell function in antibody-positive high-risk individuals. Sci Transl Med 13(583):eabc8980. https://doi.org/10.1126/scitranslmed.abc8980

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jacobsen LM, Cuthbertson D, Bundy BN et al (2024) Early metabolic endpoints identify persistent treatment efficacy in recent-onset type 1 diabetes immunotherapy trials. Diabetes Care 47(6):1048–1055. https://doi.org/10.2337/dc24-0171

Article  CAS  PubMed  Google Scholar 

Joglekar MV, Kaur S, Pociot F, Hardikar AA (2024) Prediction of progression to type 1 diabetes with dynamic biomarkers and risk scores. Lancet Diabetes Endocrinol 12(7):483–492. https://doi.org/10.1016/S2213-8587(24)00103-7

Article  CAS  PubMed  Google Scholar 

OECD (2023) Artificial intelligence in science: challenges, opportunities and the future of research. OECD Publishing, Paris. https://doi.org/10.1787/a8d820bd-en

Book  Google Scholar 

Noble JA (2015) Immunogenetics of type 1 diabetes: a comprehensive review. J Autoimmun 64:101–112. https://doi.org/10.1016/j.jaut.2015.07.014

Article  CAS  PubMed  Google Scholar 

Herold KC, Delong T, Perdigoto AL, Biru N, Brusko TM, Walker LSK (2024) The immunology of type 1 diabetes. Nat Rev Immunol 24(6):435–451. https://doi.org/10.1038/s41577-023-00985-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Battaglia M, Ahmed S, Anderson MS et al (2020) Introducing the endotype concept to address the challenge of disease heterogeneity in type 1 diabetes. Diabetes Care 43(1):5–12. https://doi.org/10.2337/dc19-0880

Article  PubMed  Google Scholar 

Evans-Molina C, Oram RA (2023) Teplizumab approval for type 1 diabetes in the USA. Lancet Diabetes Endocrinol 11(2):76–77. https://doi.org/10.1016/s2213-8587(22)00390-4

Article  CAS  PubMed  Google Scholar 

Herold KC, Gitelman SE, Gottlieb PA, Knecht LA, Raymond R, Ramos EL (2023) Teplizumab: a disease-modifying therapy for type 1 diabetes that preserves β-cell function. Diabetes Care 46(10):1848–1856. https://doi.org/10.2337/dc23-0675

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bingley PJ, Wherrett DK, Shultz A, Rafkin LE, Atkinson MA, Greenbaum CJ (2018) Type 1 Diabetes TrialNet: a multifaceted approach to bringing disease-modifying therapy to clinical use in type 1 diabetes. Diabetes Care 41(4):653–661. https://doi.org/10.2337/dc17-0806

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dunger DB, Bruggraber SFA, Mander AP et al (2022) INNODIA Master Protocol for the evaluation of investigational medicinal products in children, adolescents and adults with newly diagnosed type 1 diabetes. Trials 23(1):414. https://doi.org/10.1186/s13063-022-06259-z

Article  PubMed  PubMed Central  Google Scholar 

Bluestone JA, Auchincloss H, Nepom GT, Rotrosen D, St Clair EW, Turka LA (2010) The Immune Tolerance Network at 10 years: tolerance research at the bedside. Nat Rev Immunol 10(11):797–803. https://doi.org/10.1038/nri2869

Article  CAS  PubMed  Google Scholar 

TEDDY Study Group (2007) The Environmental Determinants of Diabetes in the Young (TEDDY) study: study design. Pediatr Diabetes 8(5):286–298. https://doi.org/10.1111/j.1399-5448.2007.00269.x

Article  Google Scholar 

Campbell-Thompson M, Wasserfall C, Kaddis J et al (2012) Network for Pancreatic Organ Donors with Diabetes (nPOD): developing a tissue biobank for type 1 diabetes. Diabetes Metab Res Rev 28(7):608–617. https://doi.org/10.1002/dmrr.2316

Article  PubMed  PubMed Central  Google Scholar 

ElZarrad MK, Lee AY, Purcell R, Steele SJ (2022) Advancing an agile regulatory ecosystem to respond to the rapid development of innovative technologies. Clin Transl Sci 15(6):1332–1339. https://doi.org/10.1111/cts.13267

Article  PubMed  PubMed Central  Google Scholar 

Rajkomar A, Dean J, Kohane I (2019) Machine learning in medicine. N Engl J Med 380(14):1347–1358. https://doi.org/10.1056/NEJMra1814259

Article  PubMed  Google Scholar 

Bzdok D, Altman N, Krzywinski M (2018) Statistics versus machine learning. Nat Methods 15(4):233–234. https://doi.org/10.1038/nmeth.4642

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nathan BM, Redondo MJ, Ismail H et al (2022) Index60 identifies individuals at appreciable risk for stage 3 among an autoantibody-positive population with normal 2-hour glucose levels: implications for current staging criteria of type 1 diabetes. Diabetes Care 45(2):311–318. https://doi.org/10.2337/dc21-0944

Article  CAS  PubMed  Google Scholar 

Rajula HSR, Verlato G, Manchia M, Antonucci N, Fanos V (2020) Comparison of conventional statistical methods with machine learning in medicine: diagnosis, drug development, and treatment. Medicina 56(9):455. https://doi.org/10.3390/medicina56090455

Article  PubMed  PubMed Central  Google Scholar 

Mackenzie SC, Sainsbury CAR, Wake DJ (2024) Diabetes and artificial intelligence beyond the closed loop: a review of the landscape, promise and challenges. Diabetologia 67(2):223–235. https://doi.org/10.1007/s00125-023-06038-8

Article  PubMed  Google Scholar 

Ngiam KY, Khor IW (2019) Big data and machine learning algorithms for health-care delivery. Lancet Oncol 20(5):e262–e273. https://doi.org/10.1016/S1470-2045(19)30149-4

Article  PubMed  Google Scholar 

National Academy of Medicine (2019) Artificial intelligence in health care: the hope, the hype, the promise, the peril. National Academies Press, Washington, DC. https://doi.org/10.17226/27111

Book  Google Scholar 

Wilkinson J, Arnold KF, Murray EJ et al (2020) Time to reality check the promises of machine learning-powered precision medicine. Lancet Digit Health 2(12):e677–e680. https://doi.org/10.1016/S2589-7500(20)30200-4

Article  PubMed  PubMed Central  Google Scholar 

US Food and Drug Administration (2023) Using artificial intelligence & machine learning in the development of drug & biological products:Discussion paper and request for feedback. Available from: https://www.fda.gov/media/167973/download?attachment. Accessed 30 July 2024

Russell WE, Bundy BN, Anderson MS et al (2023) Abatacept for delay of type 1 diabetes progression in stage 1 relatives at risk: a randomized, double-masked, controlled trial. Diabetes Care 46(5):1005–1013. https://doi.org/10.2337/dc22-2200

Article  CAS  PubMed  PubMed Central  Google Scholar 

Orban T, Bundy B, Becker DJ et al (2011) Co-stimulation modulation with abatacept in patients with recent-onset type 1 diabetes: a randomised, double-blind, placebo-controlled trial. Lancet 378(9789):412–419. https://doi.org/10.1016/S0140-6736(11)60886-6

Article  CAS  PubMed  PubMed Central  Google Scholar 

Seelig E, Howlett J, Porter L et al (2018) The DILfrequency study is an adaptive trial to identify optimal IL-2 dosing in patients with type 1 diabetes. JCI Insight 3(19):e99306. https://doi.org/10.1172/jci.insight.99306

Article  PubMed  PubMed Central  Google Scholar 

Rosenzwajg M, Salet R, Lorenzon R et al (2020) Low-dose IL-2 in children with recently diagnosed type 1 diabetes: a Phase I/II randomised, double-blind, placebo-controlled, dose-finding study. Diabetologia 63(9):1808–1821. https://doi.org/10.1007/s00125-020-05200-w

Article  CAS  PubMed  Google Scholar 

Haller MJ, Long SA, Blanchfield JL et al (2019) Low-dose anti-thymocyte globulin preserves C-peptide, reduces HbA. Diabetes 68(6):1267–1276. https://doi.org/10.2337/db19-0057

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif