Sims EK, Bundy BN, Stier K et al (2021) Teplizumab improves and stabilizes beta cell function in antibody-positive high-risk individuals. Sci Transl Med 13(583):eabc8980. https://doi.org/10.1126/scitranslmed.abc8980
Article CAS PubMed PubMed Central Google Scholar
Jacobsen LM, Cuthbertson D, Bundy BN et al (2024) Early metabolic endpoints identify persistent treatment efficacy in recent-onset type 1 diabetes immunotherapy trials. Diabetes Care 47(6):1048–1055. https://doi.org/10.2337/dc24-0171
Article CAS PubMed Google Scholar
Joglekar MV, Kaur S, Pociot F, Hardikar AA (2024) Prediction of progression to type 1 diabetes with dynamic biomarkers and risk scores. Lancet Diabetes Endocrinol 12(7):483–492. https://doi.org/10.1016/S2213-8587(24)00103-7
Article CAS PubMed Google Scholar
OECD (2023) Artificial intelligence in science: challenges, opportunities and the future of research. OECD Publishing, Paris. https://doi.org/10.1787/a8d820bd-en
Noble JA (2015) Immunogenetics of type 1 diabetes: a comprehensive review. J Autoimmun 64:101–112. https://doi.org/10.1016/j.jaut.2015.07.014
Article CAS PubMed Google Scholar
Herold KC, Delong T, Perdigoto AL, Biru N, Brusko TM, Walker LSK (2024) The immunology of type 1 diabetes. Nat Rev Immunol 24(6):435–451. https://doi.org/10.1038/s41577-023-00985-4
Article CAS PubMed PubMed Central Google Scholar
Battaglia M, Ahmed S, Anderson MS et al (2020) Introducing the endotype concept to address the challenge of disease heterogeneity in type 1 diabetes. Diabetes Care 43(1):5–12. https://doi.org/10.2337/dc19-0880
Evans-Molina C, Oram RA (2023) Teplizumab approval for type 1 diabetes in the USA. Lancet Diabetes Endocrinol 11(2):76–77. https://doi.org/10.1016/s2213-8587(22)00390-4
Article CAS PubMed Google Scholar
Herold KC, Gitelman SE, Gottlieb PA, Knecht LA, Raymond R, Ramos EL (2023) Teplizumab: a disease-modifying therapy for type 1 diabetes that preserves β-cell function. Diabetes Care 46(10):1848–1856. https://doi.org/10.2337/dc23-0675
Article CAS PubMed PubMed Central Google Scholar
Bingley PJ, Wherrett DK, Shultz A, Rafkin LE, Atkinson MA, Greenbaum CJ (2018) Type 1 Diabetes TrialNet: a multifaceted approach to bringing disease-modifying therapy to clinical use in type 1 diabetes. Diabetes Care 41(4):653–661. https://doi.org/10.2337/dc17-0806
Article CAS PubMed PubMed Central Google Scholar
Dunger DB, Bruggraber SFA, Mander AP et al (2022) INNODIA Master Protocol for the evaluation of investigational medicinal products in children, adolescents and adults with newly diagnosed type 1 diabetes. Trials 23(1):414. https://doi.org/10.1186/s13063-022-06259-z
Article PubMed PubMed Central Google Scholar
Bluestone JA, Auchincloss H, Nepom GT, Rotrosen D, St Clair EW, Turka LA (2010) The Immune Tolerance Network at 10 years: tolerance research at the bedside. Nat Rev Immunol 10(11):797–803. https://doi.org/10.1038/nri2869
Article CAS PubMed Google Scholar
TEDDY Study Group (2007) The Environmental Determinants of Diabetes in the Young (TEDDY) study: study design. Pediatr Diabetes 8(5):286–298. https://doi.org/10.1111/j.1399-5448.2007.00269.x
Campbell-Thompson M, Wasserfall C, Kaddis J et al (2012) Network for Pancreatic Organ Donors with Diabetes (nPOD): developing a tissue biobank for type 1 diabetes. Diabetes Metab Res Rev 28(7):608–617. https://doi.org/10.1002/dmrr.2316
Article PubMed PubMed Central Google Scholar
ElZarrad MK, Lee AY, Purcell R, Steele SJ (2022) Advancing an agile regulatory ecosystem to respond to the rapid development of innovative technologies. Clin Transl Sci 15(6):1332–1339. https://doi.org/10.1111/cts.13267
Article PubMed PubMed Central Google Scholar
Rajkomar A, Dean J, Kohane I (2019) Machine learning in medicine. N Engl J Med 380(14):1347–1358. https://doi.org/10.1056/NEJMra1814259
Bzdok D, Altman N, Krzywinski M (2018) Statistics versus machine learning. Nat Methods 15(4):233–234. https://doi.org/10.1038/nmeth.4642
Article CAS PubMed PubMed Central Google Scholar
Nathan BM, Redondo MJ, Ismail H et al (2022) Index60 identifies individuals at appreciable risk for stage 3 among an autoantibody-positive population with normal 2-hour glucose levels: implications for current staging criteria of type 1 diabetes. Diabetes Care 45(2):311–318. https://doi.org/10.2337/dc21-0944
Article CAS PubMed Google Scholar
Rajula HSR, Verlato G, Manchia M, Antonucci N, Fanos V (2020) Comparison of conventional statistical methods with machine learning in medicine: diagnosis, drug development, and treatment. Medicina 56(9):455. https://doi.org/10.3390/medicina56090455
Article PubMed PubMed Central Google Scholar
Mackenzie SC, Sainsbury CAR, Wake DJ (2024) Diabetes and artificial intelligence beyond the closed loop: a review of the landscape, promise and challenges. Diabetologia 67(2):223–235. https://doi.org/10.1007/s00125-023-06038-8
Ngiam KY, Khor IW (2019) Big data and machine learning algorithms for health-care delivery. Lancet Oncol 20(5):e262–e273. https://doi.org/10.1016/S1470-2045(19)30149-4
National Academy of Medicine (2019) Artificial intelligence in health care: the hope, the hype, the promise, the peril. National Academies Press, Washington, DC. https://doi.org/10.17226/27111
Wilkinson J, Arnold KF, Murray EJ et al (2020) Time to reality check the promises of machine learning-powered precision medicine. Lancet Digit Health 2(12):e677–e680. https://doi.org/10.1016/S2589-7500(20)30200-4
Article PubMed PubMed Central Google Scholar
US Food and Drug Administration (2023) Using artificial intelligence & machine learning in the development of drug & biological products:Discussion paper and request for feedback. Available from: https://www.fda.gov/media/167973/download?attachment. Accessed 30 July 2024
Russell WE, Bundy BN, Anderson MS et al (2023) Abatacept for delay of type 1 diabetes progression in stage 1 relatives at risk: a randomized, double-masked, controlled trial. Diabetes Care 46(5):1005–1013. https://doi.org/10.2337/dc22-2200
Article CAS PubMed PubMed Central Google Scholar
Orban T, Bundy B, Becker DJ et al (2011) Co-stimulation modulation with abatacept in patients with recent-onset type 1 diabetes: a randomised, double-blind, placebo-controlled trial. Lancet 378(9789):412–419. https://doi.org/10.1016/S0140-6736(11)60886-6
Article CAS PubMed PubMed Central Google Scholar
Seelig E, Howlett J, Porter L et al (2018) The DILfrequency study is an adaptive trial to identify optimal IL-2 dosing in patients with type 1 diabetes. JCI Insight 3(19):e99306. https://doi.org/10.1172/jci.insight.99306
Article PubMed PubMed Central Google Scholar
Rosenzwajg M, Salet R, Lorenzon R et al (2020) Low-dose IL-2 in children with recently diagnosed type 1 diabetes: a Phase I/II randomised, double-blind, placebo-controlled, dose-finding study. Diabetologia 63(9):1808–1821. https://doi.org/10.1007/s00125-020-05200-w
Article CAS PubMed Google Scholar
Haller MJ, Long SA, Blanchfield JL et al (2019) Low-dose anti-thymocyte globulin preserves C-peptide, reduces HbA. Diabetes 68(6):1267–1276. https://doi.org/10.2337/db19-0057
留言 (0)