ALS-linked mutant TDP-43 in oligodendrocytes induces oligodendrocyte damage and exacerbates motor dysfunction in mice

Akay LA, Effenberger AH, Tsai LH (2021) Cell of all trades: oligodendrocyte precursor cells in synaptic, vascular, and immune function. Genes Dev 35:180–198. https://doi.org/10.1101/gad.344218.120

Article  CAS  PubMed  PubMed Central  Google Scholar 

Arai T, Hasegawa M, Akiyama H, Ikeda K, Nonaka T, Mori H, Mann D, Tsuchiya K, Yoshida M, Hashizume Y et al (2006) TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem Biophys Res Commun 351:602–611. https://doi.org/10.1016/j.bbrc.2006.10.093

Article  CAS  PubMed  Google Scholar 

Arnold ES, Ling SC, Huelga SC, Lagier-Tourenne C, Polymenidou M, Ditsworth D, Kordasiewicz HB, McAlonis-Downes M, Platoshyn O, Parone PA et al (2013) ALS-linked TDP-43 mutations produce aberrant RNA splicing and adult-onset motor neuron disease without aggregation or loss of nuclear TDP-43. Proc Natl Acad Sci USA 110:E736-745. https://doi.org/10.1073/pnas.1222809110

Article  PubMed  PubMed Central  Google Scholar 

Bilican B, Serio A, Barmada SJ, Nishimura AL, Sullivan GJ, Carrasco M, Phatnani HP, Puddifoot CA, Story D, Fletcher J et al (2012) Mutant induced pluripotent stem cell lines recapitulate aspects of TDP-43 proteinopathies and reveal cell-specific vulnerability. Proc Natl Acad Sci USA 109:5803–5808. https://doi.org/10.1073/pnas.1202922109

Article  PubMed  PubMed Central  Google Scholar 

Brettschneider J, Arai K, Del Tredici K, Toledo JB, Robinson JL, Lee EB, Kuwabara S, Shibuya K, Irwin DJ, Fang L et al (2014) TDP-43 pathology and neuronal loss in amyotrophic lateral sclerosis spinal cord. Acta Neuropathol 128:423–437. https://doi.org/10.1007/s00401-014-1299-6

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carmen-Orozco RP, Tsao W, Ye Y, Sinha IR, Chang K, Trinh VT, Chung W, Bowden K, Troncoso JC, Blackshaw S et al (2024) Elevated nuclear TDP-43 induces constitutive exon skipping. Mol Neurodegener 19:45. https://doi.org/10.1186/s13024-024-00732-w

Chen JF, Wang F, Huang NX, Xiao L, Mei F (2022) Oligodendrocytes and myelin: active players in neurodegenerative brains? Dev Neurobiol 82:160–174. https://doi.org/10.1002/dneu.22867

Article  PubMed  Google Scholar 

Chen S (2023) Ultrafast one-pass FASTQ data preprocessing, quality control, and deduplication using fastp. iMeta. https://doi.org/10.1002/imt2.107

Article  PubMed  PubMed Central  Google Scholar 

Chen S, Zhou Y, Chen Y, Gu J (2018) fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34:i884–i890. https://doi.org/10.1093/bioinformatics/bty560

Article  CAS  PubMed  PubMed Central  Google Scholar 

de Boer EMJ, Orie VK, Williams T, Baker MR, De Oliveira HM, Polvikoski T, Silsby M, Menon P, van den Bos M, Halliday GM et al (2020) TDP-43 proteinopathies: a new wave of neurodegenerative diseases. J Neurol Neurosurg Psychiatry 92:86–95. https://doi.org/10.1136/jnnp-2020-322983

Article  PubMed  Google Scholar 

Dietschy JM, Turley SD (2004) Thematic review series: brain Lipids. Cholesterol metabolism in the central nervous system during early development and in the mature animal. J Lipid Res 45:1375–1397. https://doi.org/10.1194/jlr.R400004-JLR200

Article  CAS  PubMed  Google Scholar 

Donde A, Sun M, Ling JP, Braunstein KE, Pang B, Wen X, Cheng X, Chen L, Wong PC (2019) Splicing repression is a major function of TDP-43 in motor neurons. Acta Neuropathol 138:813–826. https://doi.org/10.1007/s00401-019-02042-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Duda JE, Lee VM, Trojanowski JQ (2000) Neuropathology of synuclein aggregates. J Neurosci Res 61:121–127. https://doi.org/10.1002/1097-4547(20000715)61:2%3c121::AID-JNR1%3e3.0.CO;2-4

Article  CAS  PubMed  Google Scholar 

Egawa N, Izumi Y, Suzuki H, Tsuge I, Fujita K, Shimano H, Izumikawa K, Takahashi N, Tsukita K, Enami T et al (2022) TDP-43 regulates cholesterol biosynthesis by inhibiting sterol regulatory element-binding protein 2. Sci Rep 12:7988. https://doi.org/10.1038/s41598-022-12133-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35:495–516. https://doi.org/10.1080/01926230701320337

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ferraiuolo L, Meyer K, Sherwood TW, Vick J, Likhite S, Frakes A, Miranda CJ, Braun L, Heath PR, Pineda R et al (2016) Oligodendrocytes contribute to motor neuron death in ALS via SOD1-dependent mechanism. Proc Natl Acad Sci USA 113:E6496–E6505. https://doi.org/10.1073/pnas.1607496113

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ge SX, Son EW, Yao R (2018) iDEP: an integrated web application for differential expression and pathway analysis of RNA-Seq data. BMC Bioinf 19:534. https://doi.org/10.1186/s12859-018-2486-6

Article  CAS  Google Scholar 

Goldman SA, Kuypers NJ (2015) How to make an oligodendrocyte. Development 142:3983–3995. https://doi.org/10.1242/dev.126409

Article  CAS  PubMed  PubMed Central  Google Scholar 

Goutman SA, Hardiman O, Al-Chalabi A, Chio A, Savelieff MG, Kiernan MC, Feldman EL (2022) Emerging insights into the complex genetics and pathophysiology of amyotrophic lateral sclerosis. Lancet Neurol 21:465–479. https://doi.org/10.1016/S1474-4422(21)00414-2

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guyenet SJ, Furrer SA, Damian VM, Baughan TD, La Spada AR, Garden GA (2010) A simple composite phenotype scoring system for evaluating mouse models of cerebellar ataxia. J Vis Exp. https://doi.org/10.3791/1787

Article  PubMed  PubMed Central  Google Scholar 

Han S, Gim Y, Jang EH, Hur EM (2022) Functions and dysfunctions of oligodendrocytes in neurodegenerative diseases. Front Cell Neurosci 16:1083159. https://doi.org/10.3389/fncel.2022.1083159

Article  CAS  PubMed  PubMed Central  Google Scholar 

Heo D, Ling JP, Molina-Castro GC, Langseth AJ, Waisman A, Nave KA, Möbius W, Wong PC, Bergles DE (2022) Stage-specific control of oligodendrocyte survival and morphogenesis by TDP-43. Elife. https://doi.org/10.7554/eLife.75230

Article  PubMed  PubMed Central  Google Scholar 

Ho WY, Chang JC, Lim K, Cazenave-Gassiot A, Nguyen AT, Foo JC, Muralidharan S, Viera-Ortiz A, Ong SJM, Hor JH et al (2021) TDP-43 mediates SREBF2-regulated gene expression required for oligodendrocyte myelination. J Cell Biol. https://doi.org/10.1083/jcb.201910213

Article  PubMed  PubMed Central  Google Scholar 

Huang C, Tong J, Bi F, Zhou H, Xia XG (2012) Mutant TDP-43 in motor neurons promotes the onset and progression of ALS in rats. J Clin Invest 122:107–118. https://doi.org/10.1172/JCI59130

Article  CAS  PubMed  Google Scholar 

Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57. https://doi.org/10.1038/nprot.2008.211

Article  CAS  PubMed  Google Scholar 

Huang H, He W, Tang T, Qiu M (2023) Immunological markers for central nervous system Glia. Neurosci Bull 39:379–392. https://doi.org/10.1007/s12264-022-00938-2

Article  PubMed  Google Scholar 

Igaz LM, Kwong LK, Lee EB, Chen-Plotkin A, Swanson E, Unger T, Malunda J, Xu Y, Winton MJ, Trojanowski JQ et al (2011) Dysregulation of the ALS-associated gene TDP-43 leads to neuronal death and degeneration in mice. J Clin Invest 121:726–738. https://doi.org/10.1172/JCI44867

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif