Mor G, Cardenas I, Abrahams V, Guller S. Inflammation and pregnancy: the role of the immune system at the implantation site. Ann N York Acad Sci [Internet]. 2011;1221(1):80–7. https://www.ncbi.nlm.nih.gov/pubmed/21401634
Ma WG, Song H, Das SK, Paria BC, Dey SK. Estrogen is a critical determinant that specifies the duration of the window of uterine receptivity for implantation. Proc Natl Acad Sci [Internet]. 2003;100(5):2963–8. https://www.ncbi.nlm.nih.gov/pubmed/12601161
Huang CC, Hsueh YW, Chang CW, Hsu HC, Yang TC, Lin WC et al. Establishment of the fetal-maternal interface: developmental events in human implantation and placentation. Front Cell Dev Biol [Internet]. 2023;11:1200330. https://www.ncbi.nlm.nih.gov/pubmed/37266451
Taylor A. ABC of subfertility: extent of the problem. BMJ [Internet]. 2003;327(7412):434–6. https://www.ncbi.nlm.nih.gov/pubmed/12933733
Bashiri A, Halper KI, Orvieto R. Recurrent Implantation Failure-update overview on etiology, diagnosis, treatment and future directions. Reprod Biol Endocrinol [Internet]. 2018;16(1):121. https://www.ncbi.nlm.nih.gov/pubmed/30518389
Makrigiannakis A, Petsas G, Toth B, Relakis K, Jeschke U. Recent advances in understanding immunology of reproductive failure. J Reprod Immunol [Internet]. 2011;90(1):96–104. https://www.ncbi.nlm.nih.gov/pubmed/21683452
Reig A, Franasiak J, JrS T, Seli R. E. The impact of age beyond ploidy: outcome data from 8175 euploid single embryo transfers. J Assist Reprod Genet [Internet]. 2020;37(3):595–602. https://www.ncbi.nlm.nih.gov/pubmed/32173784
Irani M, Zaninovic N, Rosenwaks Z, Xu K. Does maternal age at retrieval influence the implantation potential of euploid blastocysts? Am J Obstet Gynecol [Internet]. 2019;220(4):379 e1-379 e7. https://www.ncbi.nlm.nih.gov/pubmed/30521800
Awadalla MS, Vestal NL, McGinnis LK, Ahmady A, Paulson RJ. Effect of age and morphology on sustained implantation rate after euploid blastocyst transfer. Reprod Biomed Online [Internet]. 2021;43(3):395–403. https://www.ncbi.nlm.nih.gov/pubmed/34332901
Jasper MJ, Care AS, Sullivan B, Ingman WV, Aplin JD, Robertson SA. Macrophage-derived LIF and IL1B regulate alpha(1,2)fucosyltransferase 2 (Fut2) expression in mouse uterine epithelial cells during early pregnancy. Biol Reprod [Internet]. 2011;84(1):179–88. https://www.ncbi.nlm.nih.gov/pubmed/20864644
Kreines FM, Nasioudis D, Minis E, Irani M, Witkin SS, Spandorfer S. IL-1beta predicts IVF outcome: a prospective study. J Assist Reprod Genet [Internet]. 2018;35(11):2031–5. https://www.ncbi.nlm.nih.gov/pubmed/30225820
Plaks V, Birnberg T, Berkutzki T, Sela S, BenYashar A, Kalchenko V et al. Uterine DCs are crucial for decidua formation during embryo implantation in mice. J Clin Investig [Internet]. 2008;118(12):3954–65. https://www.ncbi.nlm.nih.gov/pubmed/19033665
King A. Uterine leukocytes and decidualization. Hum Reprod Updat [Internet]. 2000;6(1):28–36. https://www.ncbi.nlm.nih.gov/pubmed/10711827
Harper MJ. The implantation window. Baillière’s Clin Obstet Gynaecol [Internet]. 1992;6(2):351–71. https://www.ncbi.nlm.nih.gov/pubmed/1424330
Sieg W, Kiewisz J, Podolak A, Jakiel G, Woclawek-Potocka I, Lukaszuk J et al. Inflammation-Related Molecules at the Maternal-Fetal Interface during Pregnancy and in Pathologically Altered Endometrium. Curr Issues Mol Biol [Internet]. 2022;44(9):3792–808. https://www.ncbi.nlm.nih.gov/pubmed/36135172
Pantos K, Grigoriadis S, Maziotis E, Pistola K, Xystra P, Pantou A et al. The Role of Interleukins in Recurrent Implantation Failure: A Comprehensive Review of the Literature. Int J Mol Sci [Internet]. 2022;23(4):2198. https://www.ncbi.nlm.nih.gov/pubmed/35216313
Robertson SA, Care AS, Moldenhauer LM. Regulatory T cells in embryo implantation and the immune response to pregnancy. J Clin Investig [Internet]. 2018;128(10):4224–35. https://www.ncbi.nlm.nih.gov/pubmed/30272581
Mellor AL, Lemos H, Huang L, Indoleamine. 2,3-Dioxygenase and Tolerance: Where Are We Now? Front Immunol [Internet]. 2017;8:1360. https://www.frontiersin.org/articles/https://doi.org/10.3389/fimmu.2017.01360
Cohen-Fredarow A, Tadmor A, Raz T, Meterani N, Addadi Y, Nevo N et al. Ovarian dendritic cells act as a double-edged pro-ovulatory and anti-inflammatory sword. Mol Endocrinol [Internet]. 2014;28(7):1039–54. https://www.ncbi.nlm.nih.gov/pubmed/24825398
Schwede S, Alfer J, von Rango U. Differences in regulatory T-cell and dendritic cell pattern in decidual tissue of placenta accreta/increta cases. Placenta [Internet]. 2014;35(6):378–85. https://www.ncbi.nlm.nih.gov/pubmed/24725555
Bulmer JN, Williams PJ, Lash GE. Immune cells in the placental bed. Int J Dev Biol [Internet]. 2010;54(2–3):281–94. https://www.ncbi.nlm.nih.gov/pubmed/19876837
Dietl J, Honig A, Kammerer U, Rieger L. Natural killer cells and dendritic cells at the human feto-maternal interface: an effective cooperation? Placenta [Internet]. 2006;27(4–5):341–7. https://www.ncbi.nlm.nih.gov/pubmed/16023204
Kammerer U, Eggert AO, Kapp M, McLellan AD, Geijtenbeek TB, Dietl J et al. Unique appearance of proliferating antigen-presenting cells expressing DC-SIGN (CD209) in the decidua of early human pregnancy. Am J Pathol [Internet]. 2003;162(3):887–96. https://www.ncbi.nlm.nih.gov/pubmed/12598322
Rieger L, Honig A, Sutterlin M, Kapp M, Dietl J, Ruck P et al. Antigen-presenting cells in human endometrium during the menstrual cycle compared to early pregnancy. J Soc Gynecol Investig: JSGI [Internet]. 2004;11(7):488–93. https://www.ncbi.nlm.nih.gov/pubmed/15458747
Mansouri-Attia N, Oliveira LJ, Forde N, Fahey AG, Browne JA, Roche JF et al. Pivotal role for monocytes/macrophages and dendritic cells in maternal immune response to the developing embryo in cattle. Biol Reprod [Internet]. 2012;87(5):123. https://www.ncbi.nlm.nih.gov/pubmed/23034158
Schoolcraft WBGDK. In vitro culture of human blastocysts. In AUSTRALIA, SYDNEY: Parthenon Publishing Group Ltd; 1999. pp. 378–88.
Schoolcraft WB, Gardner DK, Lane M, Schlenker T, Hamilton F, Meldrum DR. Blastocyst culture and transfer: analysis of results and parameters affecting outcome in two in vitro fertilization programs. Fertil Steril [Internet]. 1999;72(4):604–9. https://www.ncbi.nlm.nih.gov/pubmed/10521095
Gietl M, Burkert F, Seiwald S, Bohm A, Hofer S, Gostner JM et al. Interferon-gamma Mediated Metabolic Pathways in Hospitalized Patients During Acute and Reconvalescent COVID-19. Int J Tryptophan Res [Internet]. 2023;16:11786469231154244. https://www.ncbi.nlm.nih.gov/pubmed/37038445
Fuchs D, Moller AA, Reibnegger G, Werner ER, Werner-Felmayer G, Dierich MP et al. Increased endogenous interferon-gamma and neopterin correlate with increased degradation of tryptophan in human immunodeficiency virus type 1 infection. Immunol Lett [Internet]. 1991;28(3):207–11. https://www.ncbi.nlm.nih.gov/pubmed/1909303
Geisler S, Mayersbach P, Becker K, Schennach H, Fuchs D, Gostner JM. Serum tryptophan, kynurenine, phenylalanine, tyrosine and neopterin concentrations in 100 healthy blood donors. Pteridines [Internet]. 2015;26(1):31–6. https://doi.org/10.1515/pterid-2014-0015
Ramu S, Acacio B, Adamowicz M, Parrett S, Jeyendran RS. Human chorionic gonadotropin from day 2 spent embryo culture media and its relationship to embryo development. Fertil Steril [Internet]. 2011;96(3):615–7. https://www.ncbi.nlm.nih.gov/pubmed/21742325
Freis A, Roesner S, Marshall A, Rehnitz J, von Horn K, Capp E et al. Non-invasive Embryo Assessment: Altered Individual Protein Profile in Spent Culture Media from Embryos Transferred at Day 5. Reprod Sci [Internet]. 2021;28(7):1866–73. https://www.ncbi.nlm.nih.gov/pubmed/33151525
McHugh RS, Shevach EM. Cutting edge: depletion of CD4 + CD25 + regulatory T cells is necessary, but not sufficient, for induction of organ-specific autoimmune disease. J Immunol [Internet]. 2002;168(12):5979–83. https://www.ncbi.nlm.nih.gov/pubmed/12055202
Groom JR, Luster AD. CXCR3 in T cell function. Exp Cell Res [Internet]. 2011;317(5):620–31. https://www.ncbi.nlm.nih.gov/pubmed/21376175
Rodgaard T, Heegaard PM, Callesen H. Non-invasive assessment of in-vitro embryo quality to improve transfer success. Reprod Biomed Online [Internet]. 2015;31(5):585–92. https://www.ncbi.nlm.nih.gov/pubmed/26380864
Belandres D, Shamonki M, Arrach N. Current status of spent embryo media research for preimplantation genetic testing. J Assist Reprod Genet [Internet]. 2019;36(5):819–26. https://www.ncbi.nlm.nih.gov/pubmed/30895497
Zhao Y, Zhang T, Guo X, Wong CK, Chen X, Chan YL et al. Successful implantation is associated with a transient increase in serum pro-inflammatory cytokine profile followed by a switch to anti-inflammatory cytokine profile prior to confirmation of pregnancy. Fertil Steril [Internet]. 2021;115(4):1044–53. https://www.ncbi.nlm.nih.gov/pubmed/33272613
Turner MD, Nedjai B, Hurst T, Pennington DJ. Cytokines and chemokines: At the crossroads of cell signalling and inflammatory disease. Biochim Biophys Acta (BBA) - Mol Cell Res [Internet]. 2014;1843(11):2563–82. https://www.ncbi.nlm.nih.gov/pubmed/24892271
Saini V, Arora S, Yadav A, Bhattacharjee J. Cytokines in recurrent pregnancy loss. Clin Chim Acta [Internet]. 2011;412(9–10):702–8. https://www.ncbi.nlm.nih.gov/pubmed/21236247
Huang G, Zhou C, Wei CJ, Zhao S, Sun F, Zhou H et al. Evaluation of in vitro fertilization outcomes using interleukin-8 in culture medium of human preimplantation embryos. Fertil Steril [Internet]. 2017;107(3):649–56. https://www.ncbi.nlm.nih.gov/pubmed/28069183
Dominguez F, Meseguer M, Aparicio-Ruiz B, Piqueras P, Quinonero A, Simon C. New strategy for diagnosing embryo implantation potential by combining proteomics and time-lapse technologies. Fertil Steril [Internet]. 2015;104(4):908–14. https://www.ncbi.nlm.nih.gov/pubmed/26196234
Lee I, Ahn SH, Kim HI, Baek HW, Park YJ, Kim H et al. Cytokines in culture media of preimplantation embryos during in vitro fertilization: Impact on embryo quality. Cytokine [Internet]. 2021;148:155714. https://www.ncbi.nlm.nih.gov/pubmed/34600304
Lindgren KE, Yaldir FG, Hreinsson J, Holte J, Karehed K, Sundstrom-Poromaa I et al. Differences in secretome in culture media when comparing blastocysts and arrested embryos using multiplex proximity assay. Upsala J Méd Sci [Internet]. 2018;123(3):143–52. https://www.ncbi.nlm.nih.gov/pubmed/30282508
Bori L, Dominguez F, Fernandez EI, Gallego RD, Alegre L, Hickman C et al. An artificial intelligence model based on the proteomic profile of euploid embryos and blastocyst morphology: a preliminary study. Reprod Biomed Online [Internet]. 2021;42(2):340–50. https://www.ncbi.nlm.nih.gov/pubmed/33279421
Rodriguez CA, Bori L, Valera MA, Conversa L, Delgado A, Meseguer M. P-168 Does the concentration of Interleukin-6 (IL-6) in spent embryo culture medium tell us anything? Association with implantation potential after euploid embryo transfer. Hum Reprod [Internet]. 2022;37(Supplement_1: deac107.163. https://doi.org/10.1093/humrep/deac107.163
Zollner KPZU, Bischofs S, Lalic I. LIF and TNF alpha concentrations in embryo culture media are predictive for embryo implantation in IVF. Asian Pac J Reprod. 2012;1(4):277–82.
Rogovskii V. Immune Tolerance as the physiologic counterpart of chronic inflammation. Front Immunol. 2020;11:2061.
Article PubMed PubMed Central CAS Google Scholar
Hansen MB. Interleukin-6 signaling requires only few IL‐6 molecules: relation to physiological concentrations of extracellular IL‐6. Immun Inflamm Dis. 2020;8(2):170–80.
Article PubMed PubMed Central CAS Google Scholar
Rogovskii VS. The linkage between inflammation and Immune Tolerance: interfering with inflammation in Cancer. Curr Cancer Drug Targets. 2017;17(4):325–32.
Article PubMed CAS Google Scholar
Prins JR, Gomez-Lopez N, Robertson SA. Interleukin-6 in pregnancy and gestational disorders. J Reprod Immunol. 2012;95(1–2):1–14.
Article PubMed CAS Google Scholar
McFarlane A, Pohler E, Moraga I. Molecular and cellular factors determining the functional pleiotropy of cytokines. FEBS J [Internet]. 2023;290(10):2525–52. https://www.ncbi.nlm.nih.gov/pubmed/35246947
Wang Q, Sun Y, Fan R, Wang M, Ren C, Jiang A et al. Role of inflammatory factors in the etiology and treatment of recurrent implantation failure. Reprod Biol [Internet]. 2022;22(4):100698. https://www.ncbi.nlm.nih.gov/pubmed/36162310
Shan J, Li DJ, Wang XQ. Towards a Better Understanding of Endometriosis-Related Infertility: A Review on How Endometriosis Affects Endometrial Receptivity. Biomolecules [Internet]. 2023;13(3):430. https://www.ncbi.nlm.nih.gov/pubmed/36979365
Choi YS, Kim S, Oh YS, Cho S, Kim SH. Elevated serum interleukin-32 levels in patients with endometriosis: A cross-sectional study. Am J Reprod Immunol [Internet]. 2019;82(2):e13149. https://www.ncbi.nlm.nih.gov/pubmed/31099938
Martinez S, Garrido N, Coperias JL, Pardo F, Desco J, Garcia-Velasco JA et al. Serum interleukin-6 levels are elevated in women with minimal-mild endometriosis. Hum Reprod [Internet]. 2007;22(3):836–42. https://www.ncbi.nlm.nih.gov/pubmed/17062580
Su Q, Pan Z, Yin R, Li X. The value of G-CSF in women experienced at least one implantation failure: a systematic review and meta-analysis. Front Endocrinol. 2024;15:1370114.
Granot I, Gnainsky Y, Dekel N. Endometrial inflammation and effect on implantation improvement and pregnancy outcome. Reproduction. 2012;144(6):661–8.
Article PubMed CAS Google Scholar
Pantos K, Grigoriadis S, Maziotis E, Pistola K, Xystra P, Pantou A, et al. The role of interleukins in recurrent implantation failure: a Comprehensive Review of the literature. Int J Mol Sci. 2022;23(4):2198.
Article PubMed PubMed Central CAS Google Scholar
Braun D, Longman RS, Albert ML. A two-step induction of indoleamine 2,3 dioxygenase (IDO) activity during dendritic-cell maturation. Blood [Internet]. 2005;106(7):2375–81. https://www.ncbi.nlm.nih.gov/pubmed/15947091
Blois SM, Kammerer U, Soto CA, Tometten MC, Shaikly V, Barrientos G et al. Dendritic cells: key to fetal tolerance? Biol Reprod [Internet]. 2007;77(4):590–8. https://www.ncbi.nlm.nih.gov/pubmed/17596562
留言 (0)