Galão RP, Wilson H, Schierhorn KL, Debeljak F, Bodmer BS, Goldhill D, Hoenen T, Wilson SJ, Swanson CM, Neil SJ (2022) TRIM25 and ZAP target the Ebola virus ribonucleoprotein complex to mediate interferon-induced restriction. PLoS Pathog 18(5):e1010530
Article PubMed PubMed Central Google Scholar
Hussein HA (2023) Brief review on ebola virus disease and one health approach. Heliyon 9(8):e19036
Article PubMed PubMed Central Google Scholar
Jain S, Khaiboullina S, Martynova E, Morzunov S, Baranwal M (2023) Epidemiology of Ebolaviruses from an etiological perspective. Pathogens 12(2):248
Article PubMed PubMed Central Google Scholar
Towner JS, Sealy TK, Khristova ML, Albariño CG, Conlan S, Reeder SA, Quan PL, Lipkin WI, Downing R, Tappero JW, Okware S (2008) Newly discovered Ebola virus associated with hemorrhagic fever outbreak in uganda. PLoS Pathog 4(11):3–8
Shears P, Dempsey TJDO, Forest T (2015) Ebola virus disease in Africa: epidemiology and nosocomial transmission Zaire. J Hosp Infect 90(1):1–9
Article PubMed CAS Google Scholar
Medica FVC, Issn PL (2014) The evolution of ebola virus disease outbreaks. Folia Med Cracov 54(3):27–32
Le Guenno B, Formenty P, Wyers M, Gounon P, Walker F, Boesch C (1995) Isolation and virus partial characterisation of strain of Ebola. Lancet 345(8960):1271–1274
Forbes KM, Webala PW, Jääskeläinen AJ, Abdurahman S, Ogola J, Masika MM, Kivistö I, Alburkat H, Plyusnin I, Levanov L, Korhonen EM (2019) Bombali virus in. Emerg Infect Dis 25(5):955–957
PubMed PubMed Central Google Scholar
Jacob ST, Crozier I, Fischer WA, Hewlett A, Kraft CS, Vega M antoine D La et al (2016) Ebola virus disease. In: Nature reviews disease primers. Springer US, pp 1–31
Pigott DM, Deshpande A, Letourneau I, Morozoff C, Reiner RC, Kraemer MU et al (2017) Local, national, and regional viral haemorrhagic fever pandemic potential in Africa: a multistage analysis. Lancet 390(10113):2662–2672
Article PubMed PubMed Central Google Scholar
Zhu L, Jin J, Wang T, Hu Y, Liu H, Gao T et al (2024) Ebola virus sequesters IRF3 in viral inclusion bodies to evade host antiviral immunity. Elife 12:1–21
Falasca L, Agrati C, Petrosillo N, Di Caro A, Capobianchi MR, Ippolito G, Piacentini M (2015) Molecular mechanisms of Ebola virus pathogenesis: focus on cell death. Cell Death Differ 22(8):1250–1259
Article PubMed PubMed Central CAS Google Scholar
McElroy AK, Akondy RS, Mcllwain DR, Chen H, Bjornson-Hooper Z, Mukherjee N, Mehta AK, Nolan G, Nichol ST, Spiropoulou CF (2020) Immunologic timeline of Ebola virus disease and recovery in humans. JCI Insight 5(10):1–13
Adepoju AJ, Latona DF, Olafare OG, Oyebamiji K, Abdul-hammed M, Semire B (2022) Ovidius university annals of chemistry molecular docking and pharmacokinetics studies of Curcuma longa (Curcumin ) potency against Ebola virus. Ovidius Univ Ann Chem 33(1):23–35
Jin Y, Lei C, Hu D, Dimitrov DS (2017) Human monoclonal antibodies as candidate therapeutics against emerging viruses. Front Med 11(4):462–470
Article PubMed PubMed Central Google Scholar
Li S, Wood MR, Kirchdoerfer RN, Abelson DM, Li S, Wood MR et al (2015) Assembly of the Ebola virus nucleoprotein from a article assembly of the Ebola Virus nucleoprotein from a chaperoned VP35 complex. Cell Rep 12(1):140–149
Article PubMed PubMed Central Google Scholar
Kirchdoerfer RN, Moyer CL, Abelson DM, Saphire EO (2016) The Ebola virus VP30-NP interaction is a regulator of viral RNA synthesis. PLoS Pathog 12:1–22
Wendt L, Brandt J, Bodmer BS, Reiche S, Schmidt ML, Traeger S et al (2020) The Ebola virus nucleoprotein recruits the nuclear RNA export factor NXF1 into inclusion bodies to facilitate viral protein expression. Cells 9(1):187
Article PubMed PubMed Central CAS Google Scholar
Hartman AL, Bird BH, Towner JS, Antoniadou ZA, Zaki SR, Nichol ST (2008) Inhibition of IRF-3 activation by VP35 is critical for the high level of virulence of Ebola virus. J Virol 82(6):2699–2704
Article PubMed PubMed Central CAS Google Scholar
Johnson RF, Mccarthy SE, Godlewski PJ, Harty RN, Irol JV (2006) Ebola virus VP35–VP40 interaction is sufficient for packaging 3E–5E minigenome RNA into virus-like particles. J Virol 80(11):5135–5144
Article PubMed PubMed Central CAS Google Scholar
Yin C, Yau SS (2017) A coevolution analysis for identifying protein–protein interactions by Fourier transform. PLoS ONE 12:1–19
Thi EP, Lee ACH, Geisbert JB, Ursic-bedoya R, Agans KN, Robbins M et al (2016) Rescue of non-human primates from advanced Sudan ebolavirus infection with lipid encapsulated siRNA. Nat Microbiol 1(10):1–10
El-din HMA, Loutfy SA, Fathy N, Elberry MH, Mayla AM, Kassem S et al (2016) Open access hypothesis molecular docking based screening of compounds against VP40 from Ebola virus. Bioinformation 12(3):192–196
Bagga S, Bouchard MJ (2014). Chapter 10 cell cycle regulation during viral infection, vol 1170
Gc JB, Pokhrel R, Bhattarai N, Johnson KA, Gerstman BS, Stahelin RV et al (2017) Biochemical and biophysical research communications graphene-VP40 interactions and potential disruption of the Ebola virus matrix fi laments. Biochem Biophys Res Commun 493(1):176–181
Article PubMed PubMed Central CAS Google Scholar
Adu-gyamfi E, Digman MA, Gratton E, Stahelin RV (2012) Single-particle tracking demonstrates that actin coordinates the movement of the Ebola virus matrix protein. Biophysj 103(9):L41–L43
Kuhn JH, Radoshitzky SR, Guth AC, Warfield KL, Li W, Vincent MJ, Towner JS, Nichol ST, Bavari S, Choe H, Aman MJ (2006) Conserved receptor-binding domains of Lake Victoria marburgvirus and Zaire ebolavirus bind a common receptor. J Biol Chem 281(23):15951–15958
Article PubMed CAS Google Scholar
Lee JE, Fusco ML, Hessell AJ, Oswald WB, Burton DR, Saphire EO (2008) Structure of the Ebola virus glycoprotein bound to an antibody from a human survivor | stanford synchrotron radiation lightsource. Nature 454(7201):177–182
Article PubMed PubMed Central CAS Google Scholar
Beniac DR, Timothy BF (2017) Structure of the Ebola virus glycoprotein spike within the virion envelope at 11 Å resolution. Sci Rep 7(April):1–8
Wahl-Jensen V, Kurz SK, Hazelton PR, Schnittler HJ, Strher U, Burton DR, Feldmann H (2005) Role of Ebola virus secreted glycoproteins and virus-like particles in activation of human macrophages. J Virol 79(4):2413–2419
Article PubMed PubMed Central CAS Google Scholar
Furuyama W, Shifflett K, Feldmann H, Marzi A (2021) The Ebola virus soluble glycoprotein contributes to viral pathogenesis by activating the MAP kinase signaling pathway. PLoS Pathog 17(9):e1009937
Article PubMed PubMed Central CAS Google Scholar
Jain S, Martynova E, Rizvanov A, Khaiboullina S, Baranwal M (2021) Structural and functional aspects of ebola virus proteins. Pathogens 10(10):1–29
Lee JE, Saphire EO (2009) Ebolavirus glycoprotein structure and mechanism of entry. Future Virol 4(6):621–635
Article PubMed PubMed Central CAS Google Scholar
Perez-Valencia LJ, Vannella KM, Ramos-Benitez MJ, Sun J, Abu-Asab M, Dorward DW et al (2023) Ebola virus shed glycoprotein is toxic to human T, B, and natural killer lymphocytes. iScience 26(8):107323
Article PubMed PubMed Central CAS Google Scholar
Cook JD, Lee JE (2013) The secret life of viral entry glycoproteins: moonlighting in immune evasion. PLoS Pathog 9(5):e1003258
留言 (0)