Inhibition of JAK2 and MDM2 to treat secondary acute myeloid leukemia evolving from myelofibrosis

Khoury JD, Solary E, Abla O, Akkari Y, Alaggio R, Apperley JF et al (2022) The 5th edition of the World Health Organization classification of haematolymphoid tumours: myeloid and histiocytic/dendritic neoplasms. Leukemia 36(7):1703–1719

Article  PubMed  PubMed Central  Google Scholar 

Leiva O, Ng SK, Chitalia S, Balduini A, Matsuura S, Ravid K (2017) The role of the extracellular matrix in primary myelofibrosis. Blood Cancer J 7(2):e525–e525

Article  PubMed  PubMed Central  Google Scholar 

Courtier F, Garnier S, Carbuccia N, Guille A, Adélaide J, Chaffanet M et al (2019) Targeted molecular characterization shows differences between primary and secondary myelofibrosis. Genes Chromosom Cancer 59(1):30–39

Article  PubMed  Google Scholar 

Tefferi A, Mudireddy M, Mannelli F, Begna KH, Patnaik MM, Hanson CA et al (2018) Blast phase myeloproliferative neoplasm: Mayo-AGIMM study of 410 patients from two separate cohorts. Leukemia 32(5):1200–1210

Article  PubMed  PubMed Central  Google Scholar 

Wang F, Qiu T, Wang H, Yang Q (2022) State-of-the-art review on myelofibrosis therapies. Clin Lymphoma Myeloma Leuk 22(5):e350–e362

Article  PubMed  Google Scholar 

Curto-Garcia N, Harrison C, McLornan DP (2020) Bone marrow niche dysregulation in myeloproliferative neoplasms. Haematologica 105(5):1189–1200

Article  PubMed  PubMed Central  Google Scholar 

Raivola J, Haikarainen T, Abraham BG, Silvennoinen O (2021) Janus kinases in leukemia. Cancers (Basel) 13(4):800

Article  PubMed  Google Scholar 

Wang H, Guo M, Wei H, Chen Y (2023) Targeting p53 pathways: mechanisms, structures, and advances in therapy. Signal Transduct Target Ther 8(1):92

Article  PubMed  PubMed Central  Google Scholar 

Joerger AC, Fersht AR (2016) The p53 Pathway: origins, inactivation in cancer, and emerging therapeutic approaches. Annu Rev Biochem 85(1):375–404

Article  PubMed  Google Scholar 

Kubesova B, Pavlova S, Malcikova J, Kabathova J, Radova L, Tom N et al (2020) MDM2 inhibition: an important step forward in cancer therapy. Leukemia 34(11):2858–2874

Article  Google Scholar 

Zhao R, Xing S, Li Z, Fu X, Li Q, Krantz SB et al (2005) Identification of an acquired JAK2 mutation in polycythemia vera. J Biol Chem 280(24):22788–22792

Article  PubMed  Google Scholar 

Kong T, Laranjeira ABA, Yang K, Fisher DAC, Yu L, Poittevin De La Frégonnière L et al (2023) DUSP6 mediates resistance to JAK2 inhibition and drives leukemic progression. Nat Cancer 4(1):108–127

PubMed  Google Scholar 

Szuber N, Vallapureddy RR, Penna D, Lasho TL, Finke C, Hanson CA et al (2018) Myeloproliferative neoplasms in the young: Mayo Clinic experience with 361 patients age 40 years or younger. Am J Hematol 93(12):1474–1484

Article  PubMed  Google Scholar 

Lee JW, Kim YG, Soung YH, Han KJ, Kim SY, Rhim HS et al (2006) The JAK2 V617F mutation in de novo acute myelogenous leukemias. Oncogene 25:1434–1436

Article  PubMed  Google Scholar 

Kratz CP, Böll S, Kontny U, Schrappe M, Niemeyer CM, Stanulla M (2006) Mutational screen reveals a novel JAK2 mutation, L611S, in a child with acute lymphoblastic leukemia. Leukemia 20(2):381–383

Article  PubMed  Google Scholar 

Scott LM, Tong W, Levine RL, Scott MA, Beer PA, Stratton MR et al (2007) JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. N Engl J Med 56(5):459–468

Article  Google Scholar 

Karantanos T, Teodorescu P, Perkins B, Christodoulou I, Esteb C, Varadhan R et al (2022) The role of the atypical chemokine receptor CCRL2 in myelodysplastic syndrome and secondary acute myeloid leukemia. Sci Adv 8(7):eabl8952

Article  PubMed  PubMed Central  Google Scholar 

Tefferi A, Lasho TL, Finke CM, Elala Y, Hanson CA, Ketterling RP et al (2016) Targeted deep sequencing in primary myelofibrosis. Blood Adv 1(2):105–111

Article  PubMed  PubMed Central  Google Scholar 

Rampal R, Ahn J, Abdel-Wahab O, Nahas M, Wang K, Lipson D et al (2014) Genomic and functional analysis of leukemic transformation of myeloproliferative neoplasms. Proc Natl Acad Sci U S A 111(50):E5401-5410

Article  PubMed  PubMed Central  Google Scholar 

Kung CP, Weber JD (2022) It’s getting complicated—a fresh look at p53-MDM2-ARF triangle in tumorigenesis and cancer therapy. Front Cell Dev Biol 10(1):818744

Article  PubMed  PubMed Central  Google Scholar 

Tsuruta-Kishino T, Koya J, Kataoka K, Narukawa K, Sumitomo Y, Kobayashi H et al (2017) Loss of p53 induces leukemic transformation in a murine model of Jak2 V617F-driven polycythemia vera. Oncogene 36(23):3300–3311

Article  PubMed  Google Scholar 

Dawson MA, Bannister AJ, Gottgens B, Foster SD, Bartke T, Green AR et al (2009) JAK2 phosphorylates histone H3Y41 and excludes HP1alpha from chromatin. Nature 461(7265):819–822

Article  PubMed  PubMed Central  Google Scholar 

Pemmaraju N, Garcia JS, Perkins A, Harb JG, Souers AJ, Werner ME et al (2023) New era for myelofibrosis treatment with novel agents beyond Janus kinase-inhibitor monotherapy: focus on clinical development of BCL-X(L) /BCL-2 inhibition with navitoclax. Cancer 129(22):3535–3545

Article  PubMed  Google Scholar 

Carter BZ, Mak PY, Mu H, Wang X, Tao W, Mak DH et al (2020) Combined inhibition of MDM2 and BCR-ABL1 tyrosine kinase targets chronic myeloid leukemia stem/progenitor cells in a murine model. Haematologica 105(5):1274–1284

Article  PubMed  PubMed Central  Google Scholar 

Karantanos T, Moliterno AR (2018) The roles of JAK2 in DNA damage and repair in the myeloproliferative neoplasms: opportunities for targeted therapy. Blood Rev 32(5):426–432

Article  PubMed  Google Scholar 

Candeias MM, Malbert-Colas L, Powell DJ, Daskalogianni C, Maslon MM, Naski N et al (2008) P53 mRNA controls p53 activity by managing Mdm2 functions. Nat Cell Biol 10(9):1098–1105

Article  PubMed  Google Scholar 

Trotta R, Vignudelli T, Candini O, Intine RV, Pecorari L, Guerzoni C et al (2023) BCR-ABL activates mdm2 mRNA translation via the La antigen. Cancer Cell 3(2):145–160

Article  Google Scholar 

Goyal H, Chachoua I, Pecquet C, Vainchenker W, Constantinescu SN (2020) A p53-JAK-STAT connection involved in myeloproliferative neoplasm pathogenesis and progression to secondary acute myeloid leukemia. Blood Rev 42(1):100712

Article  PubMed  Google Scholar 

Lundberg P, Karow A, Nienhold R, Looser R, Hao-Shen H, Nissen I et al (2014) Clonal evolution and clinical correlates of somatic mutations in myeloproliferative neoplasms. Blood 123(14):2220–2228

Article  PubMed  Google Scholar 

Lundberg P, Karow A, Nienhold R, Looser R, Hao-Shen H, Nissen I et al (2014) Clonal evolution and clinical correlates of somatic mutations in myeloproliferative neoplasms. Blood 123(14):2220–2228

Article  PubMed  Google Scholar 

Wang F, Zhang H, Wang H, Qiu T, He B, Yang Q (2022) Combination of AURKA inhibitor and HSP90 inhibitor to treat breast cancer with AURKA overexpression and TP53 mutations. Med Oncol 39(12):180

Article  PubMed  Google Scholar 

Nakatake M, Monte-Mor B, Debili N, Casadevall N, Ribrag V, Solary E et al (2012) JAK2(V617F) negatively regulates p53 stabilization by enhancing MDM2 via La expression in myeloproliferative neoplasms. Oncogene 31(10):1323–1333

Article  PubMed  Google Scholar 

Harrison C, Kiladjian JJ, Al-Ali HK, Gisslinger H, Waltzman R, Stalbovskaya V et al (2012) JAK inhibition with Ruxolitinib versus best available therapy for myelofibrosis. N Engl J Med 366(9):787–798

Article  PubMed  Google Scholar 

Verstovsek S, Mesa RA, Gotlib J, Levy RS, Gupta V, DiPersio JF et al (2012) A double-blind, placebo-controlled trial of Ruxolitinib for myelofibrosis. N Engl J Med 366(9):799–807

Article  PubMed  PubMed Central  Google Sc

留言 (0)

沒有登入
gif