Anjago WM, Zhou T, Zhang H, Shi M, Yang T, Zheng H, Wang Z (2018) Regulatory network of genes associated with stimuli sensing, signal transduction and physiological transformation of appressorium in Magnaporthe oryzae. Mycology 9:211–222. https://doi.org/10.1080/21501203.2018.1492981
Article CAS PubMed PubMed Central Google Scholar
Antony A, Veerappapillai S, Karuppasamy R (2024) In-silico bioprospecting of secondary metabolites from endophytic Streptomyces spp. against Magnaporthe oryzae, a cereal killer fungus. 3 Biotech 14:15. https://doi.org/10.1007/s13205-023-03859-7
Chutimanukul P, Kositsup B, Plaimas K, Buaboocha T, Siangliw M, Toojinda T et al (2018) Photosynthetic responses and identification of salt tolerance genes in a chromosome segment substitution line of ‘Khao Dawk Mali 105’rice. Environ Exp Bot 155:497–508. https://doi.org/10.1016/j.envexpbot.2018.07.019
Fan J, Quan W, Li GB, Hu XH, Wang Q, Wang H et al (2020) circRNAs are involved in the rice-Magnaporthe oryzae interaction. Plant Physiol 182:272–286. https://doi.org/10.1104/pp.19.00716
Article CAS PubMed Google Scholar
Farooq A, Farooq N, Akbar H, Hassan ZU, Gheewala SH (2023) A critical review of climate change impact at a global scale on cereal crop production. Agronomy 13:162. https://doi.org/10.3390/agronomy13010162
Guo X, Wang T, Jiang L, Qi H, Zhang Z (2023) PlaASDB: a comprehensive database of plant alternative splicing events in response to stress. BMC Plant Biol 23:1–10. https://doi.org/10.1186/s12870-023-04234-7
Gupta R, Min CW, Son S, Lee GH, Jang JW, Kwon SW et al (2022) Comparative proteome profiling of susceptible and resistant rice cultivars identified an arginase involved in rice defense against Xanthomonas oryzae pv. oryzae. Plant Physiol Biochem 171:105–114. https://doi.org/10.1016/j.plaphy.2021.12.031
Article CAS PubMed Google Scholar
Jia X, Zhai T (2019) Integrated analysis of multiple microarray studies to identify novel gene signatures in non-alcoholic fatty liver disease. Front Endocrinol 10:599. https://doi.org/10.3389/fendo.2019.00599
Kamoun S, Talbot NJ, Islam MT (2019) Plant health emergencies demand open science: tackling a cereal killer on the run. PLoS Biol 17:e3000302. https://doi.org/10.1371/journal.pbio.3000302
Article CAS PubMed PubMed Central Google Scholar
Karami S, Shiran B, Ravash R, Fallahi H (2023) A comprehensive analysis of transcriptomic data for comparison of plants with different photosynthetic pathways in response to drought stress. PLoS ONE 18:e0287761. https://doi.org/10.1371/journal.pone.0287761
Article CAS PubMed PubMed Central Google Scholar
Kawahara Y, Oono Y, Kanamori H, Matsumoto T, Itoh T, Minami E (2012) Simultaneous RNA-seq analysis of a mixed transcriptome of rice and blast fungus interaction. PLoS ONE 7:e49423. https://doi.org/10.1371/journal.pone.0049423
Article CAS PubMed PubMed Central Google Scholar
Kumar V, Jain P, Venkadesan S, Karkute SG, Bhati J, Abdin MZ, Sevanthi AM, Mishra DC, Chaturvedi KK, Rai A, Sharma TR (2021) Understanding rice-Magnaporthe oryzae interaction in resistant and susceptible cultivars of rice under panicle blast infection using a time-course transcriptome analysis. Genes 12:301. https://doi.org/10.3390/genes12020301
Article CAS PubMed PubMed Central Google Scholar
Liu M, Cai K, Chen Y, Luo S, Zhang Z, Lin W (2014) Proteomic analysis of silicon-mediated resistance to Magnaporthe oryzae in rice (Oryza sativa L.). Eur J Plant Pathol 139:579–592. https://doi.org/10.1007/s10658-014-0414-9
McDermaid A, Monier B, Zhao J, Liu B, Ma Q (2019) Interpretation of differential gene expression results of RNA-seq data: review and integration. Brief Bioinform 20:2044–2054. https://doi.org/10.1093/bib/bby067
Article CAS PubMed Google Scholar
Meng Q, Gupta R, Min CW, Kwon SW, Wang Y, Je BI et al (2019) Proteomics of rice—Magnaporthe oryzae interaction: what have we learned so far? Front Plant Sci 10:1383. https://doi.org/10.3389/fpls.2019.01383
Article PubMed PubMed Central Google Scholar
Moin M, Bakshi A, Saha A, Dutta M, Madhav SM, Kirti PB (2016) Rice ribosomal protein large subunit genes and their spatio-temporal and stress regulation. Front Plant Sci 7:1284. https://doi.org/10.3389/fpls.2016.01284
Article PubMed PubMed Central Google Scholar
Moin M, Saha A, Bakshi A, Divya D, Madhav MS, Kirti PB (2021) Study on transcriptional responses and identification of ribosomal protein genes for potential resistance against brown planthopper and Gall Midge Pests in rice. Curr Genom 22:98–110. https://doi.org/10.2174/1389202922666210219113220
Newitt JT, Prudence SM, Hutchings MI, Worsley SF (2019) Biocontrol of cereal crop diseases using streptomyces. Pathogens 8:78. https://doi.org/10.3390/pathogens8020078
Article CAS PubMed PubMed Central Google Scholar
Nisar M, Paracha RZ, Arshad I, Adil S, Zeb S, Hanif R, Rafiq M, Hussain Z (2021) Integrated analysis of microarray and RNA-Seq data for the identification of hub genes and networks involved in the pancreatic cancer. Front Genet 12:663787. https://doi.org/10.3389/fgene.2021.663787
Article CAS PubMed PubMed Central Google Scholar
Nookaew I, Papini M, Pornputtapong N, Scalcinati G, Fagerberg L, Uhlén M, Nielsen J (2012) A comprehensive comparison of RNA-Seq-based transcriptome analysis from reads to differential gene expression and cross-comparison with microarrays: a case study in Saccharomyces cerevisiae. Nucleic Acids Res 40:10084–10097. https://doi.org/10.1093/nar/gks804
Article CAS PubMed PubMed Central Google Scholar
Pal G, Bakade R, Deshpande S, Sureshkumar V, Patil SS, Dawane A et al (2022) Transcriptomic responses under combined bacterial blight and drought stress in rice reveal potential genes to improve multi-stress tolerance. BMC Plant Biol 22:1–20. https://doi.org/10.1186/s12870-022-03725-3
Pathania A, Singh L, Sharma PN (2021) Host plant resistance: an eco-friendly approach for crop disease management. In: Kaushal M, Prasad R (eds) Microbial biotechnology in crop protection. Springer, Singapore, pp 395–449 https://doi.org/10.1007/978-981-16-0049-4_16
Qiu Z, Chen D, He L, Zhang S, Yang Z, Zhang Y et al (2018) The rice white green leaf 2 gene causes defects in chloroplast development and affects the plastid ribosomal protein S9. Rice 11:1–12. https://doi.org/10.1186/s12284-018-0233-2
Saha A, Das S, Moin M, Dutta M, Bakshi A, Kirti MMS, PB, (2017) Genome-wide identification and comprehensive expression profiling of ribosomal protein small subunit (RPS) genes and their comparative analysis with the large subunit (RPL) genes in rice. Front Plant Sci 8:1553. https://doi.org/10.3389/fpls.2017.01553
Article PubMed PubMed Central Google Scholar
Saidi A, Hajibarat Z, Hajibarat Z (2020) Identification of responsive genes and analysis of genes with bacterial-inducible cis-regulatory elements in the promoter regions in Oryza sativa L. Acta Agric Slov 116:115–123. https://doi.org/10.14720/aas.2020.116.1.1035
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504. https://doi.org/10.1101/gr.1239303
Article CAS PubMed PubMed Central Google Scholar
Singh V, Sharma V, Katara P (2016) Comparative transcriptomics of rice and exploitation of target genes for blast infection. Agri Gene 1:143–150. https://doi.org/10.1016/j.aggene.2016.08.004
Tian D, Yang L, Chen Z, Chen Z, Wang F, Zhou Y, Luo Y, Yang L, Chen S (2018) Proteomic analysis of the defense response to Magnaporthe oryzae in rice harboring the blast resistance gene Piz-t. Rice 11:1–3
Tyagi P, Singh D, Mathur S, Singh A, Ranjan R (2022) Upcoming progress of transcriptomics studies on plants: an overview. Front Plant Sci 13:1030890. https://doi.org/10.3389/fpls.2022.1030890
留言 (0)