Genotype-environment interaction for grain yield in maize (Zea mays L.) using the additive main effects and multiplicative interaction (AMMI) model

Abakemal D, Shimelis H, Derera J (2016) Genotype-by-environment interaction and yield stability of quality protein maize hybrids developed from tropical-highland adapted inbred lines. Euphytica 209:757–769

Article  CAS  Google Scholar 

Abdala LJ, Otegui ME, Mauro GD (2024) On-farm soybean genetic progress and yield stability during the early 21st century: a case study of a commercial breeding program in Argentina and Brazil. Field Crops Res 308:109277. https://doi.org/10.1016/j.fcr.2024.109277

Article  Google Scholar 

Adu GB, Akromah R, Abdulai MS, Obeng-Antwi K, Kena AW, Tengan KML, Alidu H (2013) Assessment of genotype by environment interactions and grain yield performance of extra-early maize (Zea mays L.) Hybrids. J Biol Agricul Healthcare 3(12):7–15

Ahakpaz Karkaji F, Majidi Hervan E, Roustaii M, Bihamta M, Mohammadi S (2023) Comprehensive stability analysis of wheat genotypes through multi-environmental trials. J Agric Sci 29(1):317–334. https://doi.org/10.15832/ankutbd.999060

Article  Google Scholar 

Alam MA, Rahman M, Ahmed S, Jahan N, Khan MA-A, Islam MR, Alsuhaibani AM, Gaber A, Hossain A (2022) Genetic variation and genotype by environment interaction for agronomic traits in maize (Zea mays L.) hybrids. Plants 11(11):1522. https://doi.org/10.3390/plants11111522

Alizadeh B, Pasban Eslam B, Rezaizad A, Yazdandoost Hamadani M, Mostafavirad M (2020) Yield Stability assessment of winter oilseed rape lines in cold regions of Iran using AMMI model. J Plant Prod Res 27(3):85–96. https://doi.org/10.22069/jopp.2020.16557.2509

Article  Google Scholar 

Amelework AB, Bairu MW, Marx R, Laing M, Venter SL (2023) Genotype × environment interaction and stability analysis of selected cassava Cultivars in South Africa. Plants 12(13):2490. https://doi.org/10.3390/plants12132490

Article  PubMed  PubMed Central  Google Scholar 

Arinaitwe U, Clay SA, Nleya T (2023) Growth, yield, and yield stability of canola in the Northern Great Plains of the United States. Agron J 115:744–758. https://doi.org/10.1002/agj2.21269

Article  CAS  Google Scholar 

Atlin GN, Cairns JE, Das B (2017) Rapid breeding and varietal replacement are critical to adaptation of cropping systems in the developing world to climate change. Global Food Secur 12:31–37. https://doi.org/10.1016/j.gfs.2017.01.008

Article  Google Scholar 

Baldassarre L, Reitzel AM, Fraune S (2023) Genotype–environment interactions determine microbiota plasticity in the sea anemone Nematostella vectensis. PLoS Biol 21(1):e3001726. https://doi.org/10.1371/journal.pbio.3001726

Article  CAS  PubMed  PubMed Central  Google Scholar 

Balestre M, Von Pinho RG, Souza JC, Oliveira RL (2009) Genotypic stability and adaptability in tropical maize based on AMMI and GGE biplot analysis. Genet Mol Res 8:1311–1322

Article  CAS  PubMed  Google Scholar 

Bocianowski J, Liersch A (2022) Multidimensional analysis of diversity in genotypes of winter oilseed rape (Brassica napus L.). Agronomy 12(3):633. https://doi.org/10.3390/agronomy12030633

Bocianowski J, Prażak R (2022) Genotype by year interaction for selected quantitative traits in hybrid lines of Triticum aestivum L. with Aegilops kotschyi Boiss. and Ae. variabilis Eig. using the additive main effects and multiplicative interaction model. Euphytica 218(2):11. https://doi.org/10.1007/s10681-022-02967-4

Bocianowski J, Księżak J, Nowosad K (2019a) Genotype by environment interaction for seeds yield in pea (Pisum sativum L.) using additive main effects and multiplicative interaction model. Euphytica 215:191. https://doi.org/10.1007/s10681-019-2515-1

Bocianowski J, Niemann J, Nowosad K (2019b) Genotype-by-environment interaction for seed quality traits in interspecific cross-derived Brassica lines using additive main effects and multiplicative interaction model. Euphytica 215:7. https://doi.org/10.1007/s10681-018-2328-7

Article  CAS  Google Scholar 

Bocianowski J, Nowosad K, Tomkowiak A (2019c) Genotype – environment interaction for seed yield of maize hybrids and lines using the AMMI model. Maydica 64:M13

Google Scholar 

Bocianowski J, Radkowski A, Nowosad K, Radkowska I, Zieliński A (2021) The impact of genotype-by-environment interaction on the dry matter yield and chemical composition in timothy (Phleum pratense L.) examined by using the additive main effects and multiplicative interaction model. Grass Forage Sci 76(4):463–484. https://doi.org/10.1111/gfs.12551

Boote KJ, Kropff MJ, Bindraban PS (2001) Physiology and modelling of traits in crop plants: implications for genetic improvement. Agric Syst 70(2–3):395–420. https://doi.org/10.1016/S0308-521X(01)00053-1

Article  Google Scholar 

Brancourt-Hulmel M, Lecomte C (2003) Effect of environmental varieties on genotype x environment interaction of winter wheat. A comparison of biadditive factorial regression to AMMI. Crop Sci 43:608–617. https://doi.org/10.2135/cropsci2003.6080

Article  Google Scholar 

Ceccarelli S (1994) Specific adaptation and breeding for marginal conditions. Euphytica 77:205–219. https://doi.org/10.1007/BF02262633

Article  Google Scholar 

Chauhan P, Shrivastava MK, Kumar V, Patel N, Biswal M (2023) Stability analysis in wheat (Triticum aestivum L.) genotypes under different environmental conditions. Int J Plant Soil Sci 35(21):1218–1223. https://doi.org/10.9734/ijpss/2023/v35i214099

Crossa J (1990) Statistical analyses of multilocation trials. Adv Agron 44:55–85. https://doi.org/10.1016/S0065-2113(08)60818-4

Article  Google Scholar 

de Leon N, Jannink J-L, Edwards JW, Kaeppler SM (2016) Introduction to a special issue on genotype by environment interaction. Crop Sci 56:2081–2089. https://doi.org/10.2135/cropsci2016.07.0002in

Article  Google Scholar 

Dehghani H, Sabaghnia N, Moghaddam M (2009) Interpretation of genotype-by-environment interaction for late maize hybrids’ grain yield using a biplot method. Turk J Agric for 33(2):5. https://doi.org/10.3906/tar-0712-25

Article  Google Scholar 

Demelash H (2024) Genotype by environment interaction, AMMI, GGE biplot, and mega environment analysis of elite Sorghum bicolor (L.) Moench genotypes in humid lowland areas of Ethiopia. Heliyon 10(5):E26528. https://doi.org/10.1016/j.heliyon.2024.e26528

do Couto DP, Oliveira WBDS, de Oliveira JS, Guilhen JHS, Bernardes CdO, Posse SCP, Ferreira MFDS, Ferreira A (2023) Analysis of the effect of the interaction of genotype and environment on the yield stability of maize varieties; genetic resources for breeding. Agronomy 13(8):1970. https://doi.org/10.3390/agronomy13081970

Article  Google Scholar 

Duvick DN (2005) The contribution of breeding to yield advances in maize (Zea mays L.). Adv Agron 86:83–145. https://doi.org/10.1016/S0065-2113(05)86002-X

Article  Google Scholar 

Edwards JW (2016) Genotype×environment interaction for plant density response in maize (Zea mays L.). Crop Sci 56:1493–1505

Article  CAS  Google Scholar 

Farshadfar E, Sutka J (2003) Locating QTLs controlling adaptation in wheat using AMMI model. Cereal Res Commun 31:249–256

Article  CAS  Google Scholar 

Fekadu W, Mekbib F, Lakew B, Haussmann BIG (2023) Genotype × environment interaction and yield stability in barley (Hordeum vulgare L.) genotypes in the central highland of Ethiopia. J Crop Sci Biotechnol 26:119–133. https://doi.org/10.1007/s12892-022-00166-0

Article  CAS  Google Scholar 

Ferraudo GM, Perecin D (2014) Mixed Model, AMMI and Eberhart-Russel comparison via simulation on genotype × environment interaction study in sugarcane. Appl Math 5(14):48155. https://doi.org/10.4236/am.2014.514205

Article  Google Scholar 

Gan Y, Wang Y, Yu F, Xiao Q, Luo X, Han Z, Ke J, You W, Ke C (2023) Genotype by environment interactions for productive traits of purebred and crossbred abalone strains under different rearing modes. Aquaculture 563(1):738966. https://doi.org/10.1016/j.aquaculture.2022.738966

Article  CAS  Google Scholar 

Gauch HG (1988) Model selection and validation for yield trials with interaction. Biometrics 44:705–715. https://doi.org/10.2307/2531585

Article  Google Scholar 

Gauch HG, Zobel RW (1990) Imputing missing yield trial data. Theor Appl Genet 79:753–761

Article  PubMed  Google Scholar 

Gollob HF (1968) A statistical model which combines features of factor analytic and analysis of variance techniques. Psychometrika 33:73–115. https://doi.org/10.1007/BF02289676

Article  CAS  PubMed  Google Scholar 

Greveniotis V, Bouloumpasi E, Zotis S, Korkovelos A, Kantas D, Ipsilandis CG (2023) Genotype-by-environment interaction analysis for quantity and quality traits in faba beans using AMMI, GGE models, and stability indices. Plants 12(21):3769. https://doi.org/10.3390/plants12213769

Article  CAS  PubMed  PubMed Central  Google Scholar 

Grishkevich V, Yanai I (2013) The genomic determinants of genotype × environment interactions in gene expression. Trends Genet 29(8):479–487. https://doi.org/10.1016/j.tig.2013.05.006

Article  CAS  PubMed  Google Scholar 

Hailemariam Habtegebriel M (2022) Adaptability and stability for soybean yield by AMMI and GGE models in Ethiopia. Front Plant Sci 13:950992. https://doi.org/10.3389/fpls.2022.950992

Article  PubMed  PubMed Central  Google Scholar 

Hongyu K, García-Peña M, Borges de Araújo L, dos Santos DT (2014) Statistical analysis of yield trials by AMMI analysis of genotype × environment interaction. Biom Letters 51(2):89–102. https://doi.org/10.2478/bile-2014-0007

Article  Google Scholar 

Khan MMH, Rafii MY, Ramlee SI, Jusoh M, Al Mamun M (2021) AMMI and GGE biplot analysis for yield performance and stability assessment of selected Bambara groundnut (Vigna subterranea L. Verdc.) genotypes under the multi-environmental trials (METs). Sci Rep 11:22791. https://doi.org/10.1038/s41598-021-01411-2

Khare V, Shukla RS, Pandey S, Singh SK, Singh C (2024) Exploring the genotype-environment interaction of bread wheat in ambient and high-temperature planting conditions: a rigorous investigation. Sci Rep 14:2402. https://doi.org/10.1038/s41598-024-53052-w

Article  CAS  PubMed 

留言 (0)

沒有登入
gif