What, how, and why? – anti-EHEC phages and their application potential in medicine and food industry

Abdelsattar AS, Abdelrahman F, Dawoud A et al (2019) Encapsulation of E. coli phage ZCEC5 in chitosan–alginate beads as a delivery system in phage therapy. AMB Expr 9:87. https://doi.org/10.1186/s13568-019-0810-9

Article  Google Scholar 

Abuladze T, Li M, Menetrez MY et al (2008) Bacteriophages reduce experimental contamination of hard surfaces, tomato, spinach, broccoli, and ground beef by Escherichia coli O157:H7. Appl Environ Microbiol 74:6230–6238. https://doi.org/10.1128/AEM.01465-08

Article  PubMed  PubMed Central  Google Scholar 

Akindolire MA, Aremu BR, Ateba CN (2019) Complete genome sequence of escherichia coli O157:H7 phage PhiG17. Microbiol Resour Announc 8:e01296-e1318. https://doi.org/10.1128/MRA.01296-18

Article  PubMed  PubMed Central  Google Scholar 

Alam M, Akhter MZ, Yasmin M et al (2011) Local bacteriophage isolates showed anti- Escherichia coli O157:H7 potency in an experimental ligated rabbit ileal loop model. Can J Microbiol 57:408–415. https://doi.org/10.1139/w11-020

Article  PubMed  Google Scholar 

Alegbeleye OO, Singleton I, Sant’Ana AS (2018) Sources and contamination routes of microbial pathogens to fresh produce during field cultivation: a review. Food Microbiol 73:177–208. https://doi.org/10.1016/j.fm.2018.01.003

Article  PubMed  PubMed Central  Google Scholar 

Al-Marri T, Al-Marri A, Al-Zanbaqi R et al (2021) Multidrug resistance, biofilm formation, and virulence genes of Escherichia coli from backyard poultry farms. Vet World:2869–2877. https://doi.org/10.14202/vetworld.2021.2869-2877

Amarillas L, Chaidez C, González-Robles A et al (2016a) Characterization of novel bacteriophage phiC119 capable of lysing multidrug-resistant Shiga toxin-producing Escherichia coli O157:H7. PeerJ 4:e2423. https://doi.org/10.7717/peerj.2423

Article  PubMed  PubMed Central  Google Scholar 

Amarillas L, Chaidez C, González-Robles A, León-Félix J (2016b) Complete genome sequence of new bacteriophage phiE142, which causes simultaneously lysis of multidrug-resistant Escherichia coli O157:H7 and Salmonella enterica. Stand Genomic Sci 11:89. https://doi.org/10.1186/s40793-016-0211-5

Article  PubMed  PubMed Central  Google Scholar 

Artawinata PC, Lorraine S, Waturangi DE (2023) Isolation and characterization of bacteriophages from soil against food spoilage and foodborne pathogenic bacteria. Sci Rep 13:9282. https://doi.org/10.1038/s41598-023-36591-6

Article  PubMed  PubMed Central  Google Scholar 

Arthur TM, Kalchayanand N, Agga GE et al (2017) Evaluation of bacteriophage application to cattle in lairage at beef processing plants to reduce Escherichia coli O157:H7 prevalence on hides and carcasses. Foodborne Pathog Dis 14:17–22. https://doi.org/10.1089/fpd.2016.2189

Article  PubMed  Google Scholar 

Barr JJ (2017) A bacteriophages journey through the human body. Immunol Rev 279:106–122. https://doi.org/10.1111/imr.12565

Article  PubMed  Google Scholar 

Batinovic, Wassef, Knowler et al (2019) Bacteriophages in natural and artificial environments. Pathogens 8:100. https://doi.org/10.3390/pathogens8030100

Article  PubMed  PubMed Central  Google Scholar 

Boyacioglu O, Sharma M, Sulakvelidze A, Goktepe I (2013) Biocontrol of Escherichia coli O157: H7 on fresh-cut leafy greens. Bacteriophage 3:e24620. https://doi.org/10.4161/bact.24620

Article  PubMed  PubMed Central  Google Scholar 

Bull JJ, Wichman HA, Krone SM (2022) Modeling the directed evolution of broad host range phages. Antibiotics 11:1709. https://doi.org/10.3390/antibiotics11121709

Article  PubMed  PubMed Central  Google Scholar 

Callaway TR, Edrington TS, Brabban AD et al (2008) Bacteriophage isolated from feedlot cattle can reduce Escherichia coli O157:H7 populations in ruminant gastrointestinal tracts. Foodborne Pathog Dis 5:183–191. https://doi.org/10.1089/fpd.2007.0057

Article  PubMed  Google Scholar 

Capparelli R, Nocerino N, Iannaccone M et al (2010) Bacteriophage therapy of Salmonella enterica: a fresh appraisal of bacteriophage therapy. J Infect Dis 201:52–61. https://doi.org/10.1086/648478

Article  PubMed  Google Scholar 

Castledine M, Padfield D, Sierocinski P et al (2022) Parallel evolution of Pseudomonas aeruginosa phage resistance and virulence loss in response to phage treatment in vivo and in vitro. eLife 11:e73679. https://doi.org/10.7554/eLife.73679

Article  PubMed  PubMed Central  Google Scholar 

Chan BK, Sistrom M, Wertz JE et al (2016) Phage selection restores antibiotic sensitivity in MDR Pseudomonas aeruginosa. Sci Rep 6:26717. https://doi.org/10.1038/srep26717

Article  PubMed  PubMed Central  Google Scholar 

Chan BK, Turner PE, Kim S et al (2018) Phage treatment of an aortic graft infected with Pseudomonas aeruginosa. Evol Med Public Health 2018:60–66. https://doi.org/10.1093/emph/eoy005

Article  PubMed  PubMed Central  Google Scholar 

Choo KW, Mao L, Mustapha A (2023) CAM-21, a novel lytic phage with high specificity towards Escherichia coli O157:H7 in food products. Int J Food Microbiol 386:110026. https://doi.org/10.1016/j.ijfoodmicro.2022.110026

Article  PubMed  Google Scholar 

Chung KM, Nang SC, Tang SS (2023) The safety of bacteriophages in treatment of diseases caused by multidrug-resistant bacteria. Pharmaceuticals 16:1347. https://doi.org/10.3390/ph16101347

Article  PubMed  PubMed Central  Google Scholar 

Clarke A, De Soir S, Jones J (2020) The safety and efficacy of phage therapy for bone and joint infections: a systematic review. Antibiotics 9:795. https://doi.org/10.3390/antibiotics9110795

Article  PubMed  PubMed Central  Google Scholar 

Coffey B, Rivas L, Duffy G et al (2011) Assessment of Escherichia coli O157:H7-specific bacteriophages e11/2 and e4/1c in model broth and hide environments. Int J Food Microbiol 147:188–194. https://doi.org/10.1016/j.ijfoodmicro.2011.04.001

Article  PubMed  Google Scholar 

De Melo AG, Levesque S, Moineau S (2018) Phages as friends and enemies in food processing. Curr Opin Biotechnol 49:185–190. https://doi.org/10.1016/j.copbio.2017.09.004

Article  PubMed  Google Scholar 

Dewanggana MN, Waturangi DE, Yogiara (2021) Genomic characterization of bacteriophage BI-EHEC infecting strains of Enterohemorrhagic Escherichia coli. BMC Res Notes 14:459. https://doi.org/10.1186/s13104-021-05881-5

Article  PubMed  PubMed Central  Google Scholar 

Dini C, De Urraza PJ (2010) Isolation and selection of coliphages as potential biocontrol agents of enterohemorrhagic and Shiga toxin-producing E. coli(EHEC and STEC) in cattle: Selection of coliphages as biocontrol agents. J Appl Microbiol 109:873–887. https://doi.org/10.1111/j.1365-2672.2010.04714.x

Article  PubMed  Google Scholar 

Dini C, Bolla PA, De Urraza PJ (2016) Treatment of in vitro enterohemorrhagic Escherichia coli infection using phage and probiotics. J Appl Microbiol 121:78–88. https://doi.org/10.1111/jam.13124

Article  PubMed  Google Scholar 

Domingo-Calap P, Delgado-Martínez J (2018) Bacteriophages: protagonists of a post-antibiotic era. Antibiotics 7:66. https://doi.org/10.3390/antibiotics7030066

Article  PubMed  PubMed Central  Google Scholar 

Doub JB (2021) Risk of bacteriophage therapeutics to transfer genetic material and contain contaminants beyond endotoxins with clinically relevant mitigation strategies. IDR 14:5629–5637. https://doi.org/10.2147/IDR.S341265

Article  Google Scholar 

Duc HM, Son HM, Yi HPS et al (2020) Isolation, characterization and application of a polyvalent phage capable of controlling Salmonella and Escherichia coli O157:H7 in different food matrices. Food Res Int 131:108977. https://doi.org/10.1016/j.foodres.2020.108977

Article  PubMed  Google Scholar 

Endersen L, Coffey A (2020) The use of bacteriophages for food safety. Curr Opin Food Sci 36:1–8. https://doi.org/10.1016/j.cofs.2020.10.006

Article  Google Scholar 

Fan C, Tie D, Sun Y et al (2021) Characterization and genomic analysis of escherichia coli O157:H7 bacteriophage FEC14, a new member of genus kuttervirus. Curr Microbiol 78:159–166.

留言 (0)

沒有登入
gif