Ramirez J, Guarner F, Bustos Fernandez L, Maruy A, Sdepanian VL, Cohen H. Antibiotics as major disruptors of gut microbiota. Front Cell Infect Microbiol. 2020;10:572912. https://doi.org/10.3389/fcimb.2020.572912.
Langdon A, Crook N, Dantas G. The effects of antibiotics on the microbiome throughout development and alternative approaches for therapeutic modulation. Genome Med. 2016;8:1–16.
English BK, Gaur AH. The use and abuse of antibiotics and the development of antibiotic resistance. In: Finn A, Curtis N, Pollard A, editors. Hot Topics in Infection and Immunity in Children VI. Advances in Experimental Medicine and Biology. Springer; 2010. p. 73–82. https://doi.org/10.1007/978-1-4419-0981-7_6.
Hesterkamp T. Antibiotics clinical development and pipeline. In: Stadler M, Dersch P, editors. How to Overcome the Antibiotic Crisis. Current Topics in Microbiology and Immunology. Springer; 2015. p. 447–74. https://doi.org/10.1007/82_2015_451.
Marra A. Can virulence factors be viable antibacterial targets?. Expert Rev Anti Infect Ther. 2004;2:61–72. https://doi.org/10.1586/14787210.2.1.61.
Article CAS PubMed Google Scholar
Lee JH, Kim YG, Cho MH, Kim JA, Lee J. 7-fluoroindole as an antivirulence compound against Pseudomonas aeruginosa. FEMS Microbiol Lett. 2012;329:36–44. https://doi.org/10.1111/j.1574-6968.2012.02500.x.
Article CAS PubMed Google Scholar
Mühlen S, Dersch P. Anti-virulence strategies to target bacterial infections. In: Stadler M, Dersch P, editors. How to overcome the antibiotic crisis. Current Topics in Microbiology and Immunology. Springer; 2016. p. 147–83. https://doi.org/10.1007/82_2015_490.
Cegelski L, Marshall GR, Eldridge GR, Hultgren SJ. The biology and future prospects of antivirulence therapies. Nat Rev Microbiol. 2008;6:17–27. https://doi.org/10.1038/nrmicro1818.
Article CAS PubMed PubMed Central Google Scholar
Heras B, Scanlon MJ, Martin JL. Targeting virulence not viability in the search for future antibacterials. Br J Clin Pharmacol. 2015;79:208–15.
Article CAS PubMed PubMed Central Google Scholar
Watson K, Russell CD, Baillie JK, Dhaliwal K, Fitzgerald JR, Mitchell TJ. et al. Developing novel host-based therapies targeting microbicidal responses in macrophages and neutrophils to combat bacterial antimicrobial resistance. Front Immunol. 2020;11:786. https://doi.org/10.3389/fimmu.2020.00786.
Article CAS PubMed PubMed Central Google Scholar
Rezzoagli C, Archetti M, Mignot I, Baumgartner M, Kümmerli R. Combining antibiotics with antivirulence compounds can have synergistic effects and reverse selection for antibiotic resistance in Pseudomonas aeruginosa. PLoS Biol. 2020;18:e3000805.
Article CAS PubMed PubMed Central Google Scholar
Keller MA, Stiehm ER. Passive immunity in prevention and treatment of infectious diseases. Clin Microbiol Rev. 2000;13:602–14.
Article CAS PubMed PubMed Central Google Scholar
Schmitt CK, Meysick KC, Brien ADO. Bacterial toxins: friends or foes? Emerg Infect Dis. 1999;5:224–34. https://doi.org/10.3201/eid0502.990206.
Article CAS PubMed PubMed Central Google Scholar
D’Angelo F, Baldelli V, Halliday N, Pantalone P, Polticelli F, Fiscarelli E, et al. Identification of FDA-approved drugs as antivirulence agents targeting the pqs quorum-sensing system of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2018;62:10–1128. https://doi.org/10.1128/AAC.01296-18.
Allen RC, Popat R, Diggle SP, Brown SP. Targeting virulence: can we make evolution-proof drugs? Nat Rev Microbiol. 2014;12:300–8. https://doi.org/10.1038/nrmicro3232.
Article CAS PubMed Google Scholar
Steadman D, Lo A, Waksman G, Remaut H. Bacterial surface appendages as targets for novel antibacterial therapeutics. Future Microbiol. 2014;9:887–900. https://doi.org/10.2217/fmb.14.46.
Article CAS PubMed Google Scholar
Ramachandran G. Gram-positive and gram-negative bacterial toxins in sepsis: a brief review. Virulence. 2014;5:213–18. https://doi.org/10.4161/viru.27024.
Raymond B, Young JC, Pallett M, Endres RG, Clements A, Frankel G. Subversion of trafficking, apoptosis, and innate immunity by type III secretion system effectors. Trends Microbiol. 2013;21:430–41. https://doi.org/10.1016/j.tim.2013.06.008.
Article CAS PubMed Google Scholar
Rosadini CV, Kagan JC. Early innate immune responses to bacterial LPS. Curr Opin Immunol. 2017;44:14–19. https://doi.org/10.1016/j.coi.2016.10.005.
Article CAS PubMed Google Scholar
Minasyan H. Sepsis: mechanisms of bacterial injury to the patient. Scand J Trauma Resusc Emerg Med. 2019;27:19 https://doi.org/10.1186/s13049-019-0596-4.
Article PubMed PubMed Central Google Scholar
Hospenthal MK, Costa TRD, Waksman G. A comprehensive guide to pilus biogenesis in gram-negative bacteria. Nat Rev Microbiol. 2017;15:365–79. https://doi.org/10.1038/nrmicro.2017.40.
Article CAS PubMed Google Scholar
Ellison CK, Whitfield GB, Brun YV. Type IV Pili: dynamic bacterial nanomachines. FEMS Microbiol Rev. 2022;46:fuab053. https://doi.org/10.1093/femsre/fuab053.
Article CAS PubMed Google Scholar
Mattick JS. Type IV pili and twitching motility. Annu Rev Microbiol. 2002;56:289–314. https://doi.org/10.1146/annurev.micro.56.012302.160938.
Article CAS PubMed Google Scholar
Cehovin A, Simpson PJ, McDowell MA, Brown DR, Noschese R, Pallett M, et al. Specific DNA recognition mediated by a type IV pilin. Proc Natl Acad Sci USA. 2013;110:3065–70. https://doi.org/10.1073/pnas.1218832110.
Article PubMed PubMed Central Google Scholar
Klausen M, Heydorn A, Ragas P, Lambertsen L, Aaes-Jørgensen A, Molin S, et al. Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Mol Microbiol. 2003;48:1511–24. https://doi.org/10.1046/j.1365-2958.2003.03525.x.
Article CAS PubMed Google Scholar
Marceau M, Forest K, Béretti J-L, Tainer J, Nassif X. Consequences of the loss of O-linked glycosylation of meningococcal type IV pilin on piliation and pilus-mediated adhesion. Mol Microbiol. 1998;27:705–15. https://doi.org/10.1046/j.1365-2958.1998.00706.x.
Article CAS PubMed Google Scholar
Giltner CL, Nguyen Y, Burrows LL. Type IV pilin proteins: versatile molecular modules. Microbiol Mol Biol Rev. 2012;76:740–72. https://doi.org/10.1128/MMBR.00035-12.
Article CAS PubMed PubMed Central Google Scholar
Pelicic V. Mechanism of assembly of type 4 filaments: everything you always wanted to know (but were afraid to ask). Microbiology. 2023;169:001311. https://doi.org/10.1099/mic.0.001311.
Article CAS PubMed PubMed Central Google Scholar
Pelicic V. Type IV pili: e pluribus unum? Mol Microbiol. 2008;68:827–37. https://doi.org/10.1111/J.1365-2958.2008.06197.X.
Article CAS PubMed Google Scholar
Little JI, Singh PK, Zhao J, Dunn S, Matz H, Donnenberg MS. Type IV pili of Enterobacteriaceae species. Ecosal plus. 2024;0:eesp–0003. Doi:10.1128/ecosalplus.esp-0003-2023.
Craig L, Pique ME, Tainer JA. Type IV pilus structure and bacterial pathogenicity. Nat Rev Microbiol. 2004;2:363–78. https://doi.org/10.1038/nrmicro885.
Article CAS PubMed Google Scholar
Sun D, Lafferty MJ, Peek JA, Taylor RK. Domains within the Vibrio cholerae toxin coregulated pilin subunit that mediate bacterial colonization. Gene. 1997;192:79–85. https://doi.org/10.1016/S0378-1119(97)00007-3.
留言 (0)