Antivirulence therapy: type IV pilus as a druggable target for bacterial infections

Ramirez J, Guarner F, Bustos Fernandez L, Maruy A, Sdepanian VL, Cohen H. Antibiotics as major disruptors of gut microbiota. Front Cell Infect Microbiol. 2020;10:572912. https://doi.org/10.3389/fcimb.2020.572912.

Langdon A, Crook N, Dantas G. The effects of antibiotics on the microbiome throughout development and alternative approaches for therapeutic modulation. Genome Med. 2016;8:1–16.

Article  Google Scholar 

English BK, Gaur AH. The use and abuse of antibiotics and the development of antibiotic resistance. In: Finn A, Curtis N, Pollard A, editors. Hot Topics in Infection and Immunity in Children VI. Advances in Experimental Medicine and Biology. Springer; 2010. p. 73–82. https://doi.org/10.1007/978-1-4419-0981-7_6.

Hesterkamp T. Antibiotics clinical development and pipeline. In: Stadler M, Dersch P, editors. How to Overcome the Antibiotic Crisis. Current Topics in Microbiology and Immunology. Springer; 2015. p. 447–74. https://doi.org/10.1007/82_2015_451.

Marra A. Can virulence factors be viable antibacterial targets?. Expert Rev Anti Infect Ther. 2004;2:61–72. https://doi.org/10.1586/14787210.2.1.61.

Article  CAS  PubMed  Google Scholar 

Lee JH, Kim YG, Cho MH, Kim JA, Lee J. 7-fluoroindole as an antivirulence compound against Pseudomonas aeruginosa. FEMS Microbiol Lett. 2012;329:36–44. https://doi.org/10.1111/j.1574-6968.2012.02500.x.

Article  CAS  PubMed  Google Scholar 

Mühlen S, Dersch P. Anti-virulence strategies to target bacterial infections. In: Stadler M, Dersch P, editors. How to overcome the antibiotic crisis. Current Topics in Microbiology and Immunology. Springer; 2016. p. 147–83. https://doi.org/10.1007/82_2015_490.

Cegelski L, Marshall GR, Eldridge GR, Hultgren SJ. The biology and future prospects of antivirulence therapies. Nat Rev Microbiol. 2008;6:17–27. https://doi.org/10.1038/nrmicro1818.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Heras B, Scanlon MJ, Martin JL. Targeting virulence not viability in the search for future antibacterials. Br J Clin Pharmacol. 2015;79:208–15.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Watson K, Russell CD, Baillie JK, Dhaliwal K, Fitzgerald JR, Mitchell TJ. et al. Developing novel host-based therapies targeting microbicidal responses in macrophages and neutrophils to combat bacterial antimicrobial resistance. Front Immunol. 2020;11:786. https://doi.org/10.3389/fimmu.2020.00786.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rezzoagli C, Archetti M, Mignot I, Baumgartner M, Kümmerli R. Combining antibiotics with antivirulence compounds can have synergistic effects and reverse selection for antibiotic resistance in Pseudomonas aeruginosa. PLoS Biol. 2020;18:e3000805.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Keller MA, Stiehm ER. Passive immunity in prevention and treatment of infectious diseases. Clin Microbiol Rev. 2000;13:602–14.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schmitt CK, Meysick KC, Brien ADO. Bacterial toxins: friends or foes? Emerg Infect Dis. 1999;5:224–34. https://doi.org/10.3201/eid0502.990206.

Article  CAS  PubMed  PubMed Central  Google Scholar 

D’Angelo F, Baldelli V, Halliday N, Pantalone P, Polticelli F, Fiscarelli E, et al. Identification of FDA-approved drugs as antivirulence agents targeting the pqs quorum-sensing system of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2018;62:10–1128. https://doi.org/10.1128/AAC.01296-18.

Article  Google Scholar 

Allen RC, Popat R, Diggle SP, Brown SP. Targeting virulence: can we make evolution-proof drugs? Nat Rev Microbiol. 2014;12:300–8. https://doi.org/10.1038/nrmicro3232.

Article  CAS  PubMed  Google Scholar 

Steadman D, Lo A, Waksman G, Remaut H. Bacterial surface appendages as targets for novel antibacterial therapeutics. Future Microbiol. 2014;9:887–900. https://doi.org/10.2217/fmb.14.46.

Article  CAS  PubMed  Google Scholar 

Ramachandran G. Gram-positive and gram-negative bacterial toxins in sepsis: a brief review. Virulence. 2014;5:213–18. https://doi.org/10.4161/viru.27024.

Article  PubMed  Google Scholar 

Raymond B, Young JC, Pallett M, Endres RG, Clements A, Frankel G. Subversion of trafficking, apoptosis, and innate immunity by type III secretion system effectors. Trends Microbiol. 2013;21:430–41. https://doi.org/10.1016/j.tim.2013.06.008.

Article  CAS  PubMed  Google Scholar 

Rosadini CV, Kagan JC. Early innate immune responses to bacterial LPS. Curr Opin Immunol. 2017;44:14–19. https://doi.org/10.1016/j.coi.2016.10.005.

Article  CAS  PubMed  Google Scholar 

Minasyan H. Sepsis: mechanisms of bacterial injury to the patient. Scand J Trauma Resusc Emerg Med. 2019;27:19 https://doi.org/10.1186/s13049-019-0596-4.

Article  PubMed  PubMed Central  Google Scholar 

Hospenthal MK, Costa TRD, Waksman G. A comprehensive guide to pilus biogenesis in gram-negative bacteria. Nat Rev Microbiol. 2017;15:365–79. https://doi.org/10.1038/nrmicro.2017.40.

Article  CAS  PubMed  Google Scholar 

Ellison CK, Whitfield GB, Brun YV. Type IV Pili: dynamic bacterial nanomachines. FEMS Microbiol Rev. 2022;46:fuab053. https://doi.org/10.1093/femsre/fuab053.

Article  CAS  PubMed  Google Scholar 

Mattick JS. Type IV pili and twitching motility. Annu Rev Microbiol. 2002;56:289–314. https://doi.org/10.1146/annurev.micro.56.012302.160938.

Article  CAS  PubMed  Google Scholar 

Cehovin A, Simpson PJ, McDowell MA, Brown DR, Noschese R, Pallett M, et al. Specific DNA recognition mediated by a type IV pilin. Proc Natl Acad Sci USA. 2013;110:3065–70. https://doi.org/10.1073/pnas.1218832110.

Article  PubMed  PubMed Central  Google Scholar 

Klausen M, Heydorn A, Ragas P, Lambertsen L, Aaes-Jørgensen A, Molin S, et al. Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Mol Microbiol. 2003;48:1511–24. https://doi.org/10.1046/j.1365-2958.2003.03525.x.

Article  CAS  PubMed  Google Scholar 

Marceau M, Forest K, Béretti J-L, Tainer J, Nassif X. Consequences of the loss of O-linked glycosylation of meningococcal type IV pilin on piliation and pilus-mediated adhesion. Mol Microbiol. 1998;27:705–15. https://doi.org/10.1046/j.1365-2958.1998.00706.x.

Article  CAS  PubMed  Google Scholar 

Giltner CL, Nguyen Y, Burrows LL. Type IV pilin proteins: versatile molecular modules. Microbiol Mol Biol Rev. 2012;76:740–72. https://doi.org/10.1128/MMBR.00035-12.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pelicic V. Mechanism of assembly of type 4 filaments: everything you always wanted to know (but were afraid to ask). Microbiology. 2023;169:001311. https://doi.org/10.1099/mic.0.001311.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pelicic V. Type IV pili: e pluribus unum? Mol Microbiol. 2008;68:827–37. https://doi.org/10.1111/J.1365-2958.2008.06197.X.

Article  CAS  PubMed  Google Scholar 

Little JI, Singh PK, Zhao J, Dunn S, Matz H, Donnenberg MS. Type IV pili of Enterobacteriaceae species. Ecosal plus. 2024;0:eesp–0003. Doi:10.1128/ecosalplus.esp-0003-2023.

Craig L, Pique ME, Tainer JA. Type IV pilus structure and bacterial pathogenicity. Nat Rev Microbiol. 2004;2:363–78. https://doi.org/10.1038/nrmicro885.

Article  CAS  PubMed  Google Scholar 

Sun D, Lafferty MJ, Peek JA, Taylor RK. Domains within the Vibrio cholerae toxin coregulated pilin subunit that mediate bacterial colonization. Gene. 1997;192:79–85. https://doi.org/10.1016/S0378-1119(97)00007-3.

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif