Shaping the future of medicine through diverse therapeutic applications of tetralin derivatives

Collin G, Höke H, Greim H. Naphthalene and hydronaphthalenes. Ullmann’s Encyclopedia of Industrial Chemistry. 2000. https://doi.org/10.1002/14356007.a17_001.

Laane J. Vibrational potential energy surfaces in electronic excited states. In Frontiers of Molecular Spectroscopy (pp. 63–132). Elsevier

Turan-Zitouni G, Yurttaş L, Tabbi A, Akalın Çiftçi G, Temel HE, Kaplancıklı ZA. New thiazoline-tetralin derivatives and biological activity evaluation. Molecules. 2018;23:135. https://doi.org/10.3390/molecules23010135.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Guichard N, Guillarme D, Bonnabry P, Fleury-Souverain S. Antineoplastic drugs and their analysis: a state of the art review. Analyst. 2017;142:2273–321. https://doi.org/10.1039/C7AN00367F.

Article  PubMed  CAS  Google Scholar 

Hamdy NA, Gamal-Eldeen AM, Abdel-Aziz HA, Fakhr IM. Modulation of carcinogen metabolizing enzymes by new fused heterocycles pendant to 5, 6, 7, 8-tetrahydronaphthalene derivatives. Eur J Med Chem. 2010;45:463–70. https://doi.org/10.1016/j.ejmech.2009.10.027.

Article  PubMed  CAS  Google Scholar 

Haworth RD. The chemistry of the lignan group of natural products. J Chem Soc. 1942;448–56. https://doi.org/10.1039/JR9420000448.

MacRae WD, Towers GN. Biological activities of lignans. Phytochem. 1984;23:1207–20. https://doi.org/10.1007/s11829-012-9236-x.

Article  CAS  Google Scholar 

Kumar D, Rajagopal M, Akowuah GA, Lee YX, Chong CW, Gan PW, et al. Aryltetralin-type Lignan of Podophyllum: a comprehensive review. Nat Prod J. 2022;12:19–28. https://doi.org/10.2174/2210315511666210210160903.

Article  CAS  Google Scholar 

Sellars JD, Steel PG. Advances in the synthesis of aryltetralin lignan lactones. Eur J Org Chem. 2007;23:3815–28. https://doi.org/10.1002/ejoc.200700097.

Article  CAS  Google Scholar 

Chaitramallu M, Devaraju P. Synthesis of organic nanoparticle of aryl tetralin compounds and study of their biological activities for targeted delivery system. Indian J Adv Chem Sci. 2014;2:61–3. https://www.ijacskros.com/artcles/IJACS-MSP81.pdf.

CAS  Google Scholar 

Knox C, Wilson M, Klinger CM, Franklin M, Oler E, Wilson A, et al. DrugBank 6.0: the DrugBank knowledgebase for 2024. Nucleic Acids Res. 2024;5:D1265–75.

Article  Google Scholar 

Gezici S, Şekeroğlu N. Current perspectives in the application of medicinal plants against cancer: novel therapeutic agents. Anticancer Agents Med Chem. 2019;1:101–11. https://doi.org/10.2174/1871520619666181224121004.

Article  CAS  Google Scholar 

Kostova I. Synthetic and natural coumarins as cytotoxic agents. Curr Med Chem Anticancer Agents. 2005;1:29–46. https://doi.org/10.2174/1568011053352550.

Article  Google Scholar 

Amin KM, El-Zahar MI, Anwar MM, Kamel MM, Mohamed MH. Synthesis and anticancer activity of novel tetralin-6-yl pyridine and tetralin-6-yl pyrimidine derivatives. Acta Pol Pharm. 2009;1:279–91.

Google Scholar 

Al-Abdullah ES. Synthesis and anticancer activity of some novel tetralin-6-yl-pyrazoline, 2-thioxopyrimidine, 2-oxopyridine, 2-thioxo-pyridine and 2-iminopyridine derivatives. Molecules. 2011;20:3410–9. https://doi.org/10.3390/molecules16043410.

Article  CAS  Google Scholar 

Nofal ZM, El-Zahar MI, Gouhar RS. Synthesis, moleculer docking and anticancer screening of some novel tetrahydronaphthyl thiazolyl pyrazoles and other related derivatives. Egypt J Chem. 2012;55:413–35.

Article  Google Scholar 

Gautam Y, Dwivedi S, Srivastava A, Singh A, Chanda D, Singh J, et al. 2-(3′, 4′-Dimethoxybenzylidene) tetralone induces anti-breast cancer activity through microtubule stabilization and activation of reactive oxygen species. RSC Adv. 2016;6:33369–79. https://doi.org/10.1039/C6RA02663J.

Article  CAS  Google Scholar 

Turan-Zitouni G, Yurttaş L, Tabbi A, Akalın Çiftçi G, Temel HE, Kaplancıklı ZA. New thiazoline-tetralin derivatives and biological activity evaluation. Molecules. 2018;10:135. https://doi.org/10.3390/molecules23010135.

Article  CAS  Google Scholar 

Hamza EK, Hamdy NA, Zarie ES, Fakhr IM, Elwahy AH, Awada HM. Synthesis and in vitro anticancer evaluation of novel pyridine derivatives bearing tetrahydronaphthalene scaffold. Org Chem. 2019:1–23. https://doi.org/10.24820/ark.5550190.p011.056.

Hamza EK, Hamdy NA, Zarie ES, Fakhr IM, Elwahy AH, Awad HM. Synthesis and in vitro evaluation of novel tetralin‐pyrazolo [3, 4‐b] pyridine hybrids as potential anticancer agents. J Heterocycl Chem. 2020;57:182–96. https://doi.org/10.1002/jhet.3764.

Article  CAS  Google Scholar 

Özgeriş B, Akbaba Y, Özdemir Ö, Türkez H, Göksu S. Synthesis and anticancer activity of novel ureas and sulfamides incorporating 1-aminotetralins. Arch Med Res. 2017;48:513–9. https://doi.org/10.1016/j.arcmed.2017.12.002.

Article  PubMed  CAS  Google Scholar 

Hamdy NA, El Sayed MT, Hussein HA, Mounier MM, Anwar MM. Synthesis of novel heterocyclic compounds bearing tetralin moiety of potential anticancer activity targeting the intrinsic apoptotic pathway. Synth Commun. 2023;53:298–315. https://doi.org/10.1080/00397911.2023.2172348.

Article  CAS  Google Scholar 

Zaki AA, El-Amier YA, Ashour A. Two new cytotoxic tetralin derivatives from Panicum turgidum. Nat Prod Res. 2023;37:1595–1600. https://doi.org/10.1080/14786419.2022.2103121.

Article  PubMed  CAS  Google Scholar 

Bongomin F, Gago S, Oladele RO, Denning DW. Global and multi-national prevalence of fungal diseases—estimate precision. J Fungi. 2017;3:57. https://doi.org/10.3390/jof3040057.

Article  Google Scholar 

Kanafani ZA, Perfect JR. Resistance to antifungal agents: mechanisms and clinical impact. Clin Infect Dis. 2008;46:120–8. https://doi.org/10.1086/524071.

Article  PubMed  Google Scholar 

Carpouron JE, de Hoog S, Gentekaki E, Hyde KD. Emerging animal-associated fungal diseases. J Fungi. 2022;8:611. https://doi.org/10.3390/jof8060611.

Article  Google Scholar 

Mesquita JR. Emerging and re-emerging diseases: novel challenges in today’s world or more of the same? Animals. 2021;11:2382. https://doi.org/10.3390/ani11082382.

Article  PubMed  PubMed Central  Google Scholar 

Firacative C. Invasive fungal disease in humans: are we aware of the real impact? Mem Inst Oswaldo Cruz. 2020;115:e200430. https://doi.org/10.1590/0074-02760200430.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Benitez LL, Carver PL. Adverse effects associated with long-term administration of azole antifungal agents. Drugs. 2019;79:833–53. https://doi.org/10.1007/s40265-019-01127-8.

Article  PubMed  CAS  Google Scholar 

Houšť J, Spížek J, Havlíček V. Antifungal drugs. Metabolites. 2020;10:106. https://doi.org/10.3390/metabo10030106.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Chen SC, Sorrell TC. Antifungal agents. Med J Aust. 2007;187:404. https://doi.org/10.5694/j.1326-5377.2007.tb01313.x.

Article  PubMed  Google Scholar 

Zhu J, Lu J, Zhou Y, Li Y, Cheng J, Zheng C. Design, synthesis, and antifungal activities in vitro of novel tetrahydroisoquinoline compounds based on the structure of lanosterol 14α-demethylase (CYP51) of fungi. Bioorg Med Chem Lett. 2006;16:5285–9. https://doi.org/10.1016/j.bmcl.2006.08.001.

Article  PubMed  CAS  Google Scholar 

Kumar BK, Sekhar KV, Chander S, Kunjiappan S, Murugesan S. Medicinal chemistry perspectives of 1, 2, 3, 4-tetrahydroisoquinoline analogs–biological activities and SAR studies. RSC Adv. 2021;11:12254–87. https://doi.org/10.1039/D1RA01480C.

Article  Google Scholar 

Yao B, Ji H, Cao Y, Zhou Y, Zhu J, Lü J, et al. Synthesis and antifungal activities of novel 2-aminotetralin derivatives. J Med Chem. 2007;50:5293–5300. https://doi.org/10.1021/jm0701167.

Article  PubMed  CAS  Google Scholar 

Tang H, Zhou YJ, Li YW, Lv JG, Zheng CH, Chen J, et al. Design, synthesis and antifungal activities in vitro of novel tetralin compounds. Chin Chem Lett. 2008;19:264–8. https://doi.org/10.1016/j.cclet.2007.12.031.

Article  CAS  Google Scholar 

Liang RM, Cao YB, Fan KH, Xu Y, Gao PH, Zhou YJ, et al. 2-Amino-nonyl-6-methoxyl-tetralin muriate inhibits sterol C-14 reductase in the ergosterol biosynthetic pathway. Acta Pharmacol Sin. 2009;30:1709–16. https://doi.org/10.1038/aps.2009.157.

留言 (0)

沒有登入
gif