World Health Organization, https://www.who.int/news/item/01-02-2024-global-cancer-burden-growing--amidst-mounting-need-for-services. Accessed 30 Jun 2024.
Villanueva L, Alvarez-Errico D, Esteller M. The contribution of epigenetics to cancer immunotherapy. Trends Immunol. 2020;41:676–91.
Article CAS PubMed Google Scholar
Morelli E, Gullà A, Rocca R, Federico C, Raimondi L, Malvestiti S, et al. The non-coding RNA landscape of plasma cell dyscrasias. Cancers. 2020;12:320.
Article CAS PubMed PubMed Central Google Scholar
Mei H, Liu Y, Zhou Q, Hu K, Liu Y. Long noncoding RNA MALAT1 acts as a potential biomarker in cancer diagnosis and detection: a meta-analysis. Biomark Med. 2019;13:45–54.
Article CAS PubMed Google Scholar
Boon RA, Jaé N, Holdt L, Dimmeler S. Long noncoding RNAs: from clinical genetics to therapeutic targets? J Am Coll Cardiol. 2016;67:1214–26.
Article CAS PubMed Google Scholar
Rao AKDM, Rajkumar T, Mani S. Perspectives of long non-coding RNAs in cancer. Mol Biol Rep. 2017;44:203–18.
Article CAS PubMed Google Scholar
Ji P, Diederichs S, Wang W, Böing S, Metzger R, Schneider PM, et al. MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene. 2003;22:8031–41.
Xu D, Wang W, Wang D, Ding J, Zhou Y, Zhang W. Long noncoding RNA MALAT-1: A versatile regulator in cancer progression, metastasis, immunity, and therapeutic resistance. Non-coding RNA Res. 2024;9:388–406.
Li ZX, Zhu QN, Zhang HB, Hu Y, Wang G, Zhu YS. MALAT1: a potential biomarker in cancer. Cancer Manag Res. 2018;10:6757–68.
Article CAS PubMed PubMed Central Google Scholar
Yang F, Yi F, Han X, Du Q, Liang Z. MALAT-1 interacts with hnRNP C in cell cycle regulation. FEBS Lett. 2013;587:3175–81.
Article CAS PubMed Google Scholar
Brown JA, Bulkley D, Wang J, Valenstein ML, Yario TA, Steitz TA, et al. Structural insights into the stabilization of MALAT1 noncoding RNA by a bipartite triple helix. Nat Struct Mol Biol. 2014;21:633–40.
Article CAS PubMed PubMed Central Google Scholar
Donlic A, Morgan BS, Xu JL, Liu A, Roble C Jr, et al. Discovery of Small Molecule Ligands for MALAT1 by Tuning an RNA-Binding Scaffold. Angew Chem Int. 2019;57:13242–7.
Donlic A, Zafferani M, Padroni G, Puri M, Hargrove AE. Regulation of MALAT1 triple helix stability and in vitro degradation by diphenylfurans. Nucleic Acids Res. 2020;48:7653–64.
Article CAS PubMed PubMed Central Google Scholar
Abulwerdi FA, Xu W, Ageeli AA, Yonkunas MJ, Arun G, Nam H, et al. Selective small-molecule targeting of a triple helix encoded by the long noncoding RNA, MALAT1. ACS Chem Biol. 2019;14:223–35.
Article CAS PubMed PubMed Central Google Scholar
François-Moutal L, Miranda VG, Mollasalehi N, Gokhale V, Khanna M. In silico targeting of the long noncoding RNA MALAT1. ACS Med Chem Lett. 2021;12:915–21.
Article PubMed PubMed Central Google Scholar
Rocca R, Polerà N, Juli G, Grillone K, Maruca A, Di Martino MT. et al. Hit identification of novel small molecules interfering with MALAT1 triplex by a structure-based virtual screening. Arch Pharm. 2023;356:e2300134
Drugbank. www.drugbank.ca. Accessed 30 Jun 2024.
Schrödinger Release 2018-1: Epik, Schrödinger: LLC, New York, NY, 2018. (c) Impact, Schrödinger, LLC, New York, NY; Prime, Schrödinger, LLC, New York, NY, 2018.
Shivakumar D, Harder E, Damm W, Friesner RA, Sherman W. Improving the prediction of absolute solvation free energies using the next generation OPLS force field. J Chem Theory Comput. 2012;8:2553–8.
Article CAS PubMed Google Scholar
Karpiński TM, Szkaradkiewicz AK. Chlorhexidine–pharmaco-biological activity and application. Eur Rev Med Pharmacol Sci. 2015;19:1321–6.
Pinder RM, Brogden RN, Speight TM, Avery GS. Hexoprenaline: a review of its pharmacological properties and therapeutic efficacy with particular reference to asthma. Drugs. 1977;14:1–28.
Article CAS PubMed Google Scholar
Umezawa H, Ueda M, Maeda K, Yagishita K, Kondo S, Okami Y, et al. Production and isolation of a new antibiotic: kanamycin. J Antibiot. 1957;10:181–8.
Vandekerckhove S, D’hooghe M. Quinoline-based antimalarial hybrid compounds. Bioorg Med Chem. 2015;23:5098–119.
Article CAS PubMed Google Scholar
Plantone D, Koudriavtseva T. Current and future use of chloroquine and hydroxychloroquine in infectious, immune, neoplastic, and neurological diseases: a mini-review. Clin Drug Investig. 2018;38:653–71.
Article CAS PubMed Google Scholar
Devaux CA, Rolain JM, Colson P, Raoult D. New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19? Int J Antimicrob Agents. 2020;55:105938.
Article CAS PubMed PubMed Central Google Scholar
Gautret P, Lagier JC, Parola P, Hoang VT, Meddeb L, Mailhe M, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents. 2020;56:105949.
Article CAS PubMed PubMed Central Google Scholar
Desmond Molecular Dynamics System; D. E. Shaw Research: New York, NY, 2018.
Khairnar MR, Wadgave U, Jadhav H, Naik R. Anticancer activity of chlorhexidine and cranberry extract: an in-vitro study. J Exp Ther Oncol. 2018;12:201–5.
Fang Z, Zhang S, Wang Y, Shen S, Wang F, Hao Y, et al. Long non-coding RNA MALAT-1 modulates metastatic potential of tongue squamous cell carcinomas partially through the regulation of small proline rich proteins. BMC Cancer. 2016;16:706.
Article PubMed PubMed Central Google Scholar
Catalano R, Rocca R, Juli G, Costa G, Maruca A, Artese A, et al. A drug repurposing screening reveals a novel epigenetic activity of hydroxychloroquine. Eur J Med Chem. 2019;183:111715.
留言 (0)