Ventola CL. The antibiotic resistance crisis: part 1: causes and threats. P T. 2015;40:277–83.
PubMed PubMed Central Google Scholar
Ibrahim TS, Almalki AJ, Moustafa AH, Allam RM, Abuo-Rahma GE-DA, El Subbagh HI, et al. Novel 1,2,4-oxadiazole-chalcone/oxime hybrids as potential antibacterial DNA gyrase inhibitors: design, synthesis, ADMET prediction and molecular docking study. Bioorg Chem. 2021;111:104885.
Article PubMed CAS Google Scholar
Enquist P-A, Gylfe Å, Hägglund U, Lindström P, Norberg-Scherman H, Sundin C, et al. Derivatives of 8-hydroxyquinoline—antibacterial agents that target intra- and extracellular gram-negative pathogens. Bioorg Med Chem Lett. 2012;22:3550–3.
Article PubMed CAS Google Scholar
Murray CJL, Ikuta KS, Sharara F, Swetschinski L, Robles Aguilar G, Gray A, et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. The Lancet. 2022;399(10325):629–55. https://doi.org/10.1016/S0140-6736(21)02724-0.
Almalki AJ, Ibrahim TS, Taher ES, Mohamed MFA, Youns M, Hegazy WAH, et al. Synthesis, antimicrobial, anti-virulence and anticancer evaluation of new 5(4H)-oxazolone-based sulfonamides. Molecules. 2022;27:671.
Article PubMed PubMed Central CAS Google Scholar
Eftekhari-Sis B, Zirak M, Akbari A. Arylglyoxals in synthesis of heterocyclic compounds. Chem Rev. 2013;113:2958–3043.
Article PubMed CAS Google Scholar
Bozorov K, Zhao J-Y, Elmuradov B, Pataer A, Aisa HA. Recent developments regarding the use of thieno[2,3-d]pyrimidin-4-one derivatives in medicinal chemistry, with a focus on their synthesis and anticancer properties. Eur J Med Chem. 2015;102:552–73.
Article PubMed CAS Google Scholar
Abbas SE, Abdel Gawad NM, George RF, Akar YA. Synthesis, antitumor and antibacterial activities of some novel tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidine derivatives. Eur J Med Chem. 2013;65:195–204.
Article PubMed CAS Google Scholar
Masaoka T, Chung S, Caboni P, Rausch JW, Wilson JA, Taskent-Sezgin H, et al. Exploiting drug-resistant enzymes as tools to identify thienopyrimidinone inhibitors of human immunodeficiency virus reverse transcriptase-associated ribonuclease H. J Med Chem. 2013;56:5436–45.
Article PubMed CAS Google Scholar
Hafez HN, El-Gazzar A-RBA, Nawwar GAM. Synthesis, biological and medicinal significance of S-glycosido-thieno[2,3-d]-pyrimidines as new anti-inflammatory and analgesic agents. Eur J Med Chem. 2010;45:1485–93.
Article PubMed CAS Google Scholar
Deng J, Peng L, Zhang G, Lan X, Li C, Chen F, et al. The highly potent and selective dipeptidyl peptidase IV inhibitors bearing a thienopyrimidine scaffold effectively treat type 2 diabetes. Eur J Med Chem. 2011;46:71–6.
Article PubMed CAS Google Scholar
Kotaiah Y, Harikrishna N, Nagaraju K, Venkata Rao C. Synthesis and antioxidant activity of 1,3,4-oxadiazole tagged thieno[2,3-d]pyrimidine derivatives. Eur J Med Chem. 2012;58:340–5.
Article PubMed CAS Google Scholar
Mohamed MFA, Youssif BGM, Shaykoon MSA, Abdelrahman MH, Elsadek BEM, Aboraia AS, et al. Utilization of tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidinone as a cap moiety in design of novel histone deacetylase inhibitors. Bioorg Chem. 2019;91:103127.
Article PubMed CAS Google Scholar
Mohi El-Deen EM, Abd El-Meguid EA, Hasabelnaby S, Karam EA, Nossier ES. Synthesis, docking studies, and in vitro evaluation of some novel thienopyridines and fused thienopyridine–quinolines as antibacterial agents and DNA gyrase inhibitors. Molecules. 2019;24:3650.
Article PubMed PubMed Central Google Scholar
Bering L, Craven EJ, Sowerby Thomas SA, Shepherd SA, Micklefield J. Merging enzymes with chemocatalysis for amide bond synthesis. Nat Commun. 2022;13:380.
Article PubMed PubMed Central CAS Google Scholar
Kumari S, Carmona AV, Tiwari AK, Trippier PC. Amide bond bioisosteres: strategies, synthesis, and successes. J Med Chem. 2020;63:12290–358.
Article PubMed PubMed Central CAS Google Scholar
Zhao H, Tang S, Xu X, Du L. Hydrogen bonding interaction between atmospheric gaseous amides and methanol. Int J Mol Sci. 2017;18(1):4.
Cui Y, Rao X, Shang S, Song Z, Shen M, Liu H. Synthesis, structure analysis and antibacterial activity of N-[5-dehydroabietyl-[1,3,4]thiadiazol-2-yl]-aromatic amide derivatives. J Saudi Chem Soc. 2017;21:S258–63..
Chen J, Yi C, Wang S, Wu S, Li S, Hu D, et al. Novel amide derivatives containing 1,3,4-thiadiazole moiety: design, synthesis, nematocidal and antibacterial activities. Bioorg Med Chem Lett. 2019;29:1203–10.
Article PubMed CAS Google Scholar
Wang Z-J, Gao Y, Hou Y-L, Zhang C, Yu S-J, Bian Q, et al. Design, synthesis, and fungicidal evaluation of a series of novel 5-methyl-1H-1,2,3-trizole-4-carboxyl amide and ester analogues. Eur J Med Chem. 2014;86:87–94.
Article PubMed CAS Google Scholar
Wei Q, Wang X, Cheng J-H, Zeng G, Sun D-W. Synthesis and antimicrobial activities of novel sorbic and benzoic acid amide derivatives. Food Chem. 2018;268:220–32.
Article PubMed CAS Google Scholar
Gewald K, Schinke E, Bottcher H. Heterocyclen aus CH-aciden Nitrilen, VIII. 2-Amino-thiophene aus methylenaktiven Nitrilen, Carbonylverbindungen und Schwefel. Chem Ber. 1996;99:94–100.
Durcik M, Tammela P, Barančoková M, Tomašič T, Ilaš J, Kikelj D, et al. Synthesis and evaluation of N-phenylpyrrolamides as DNA gyrase B inhibitors. ChemMedChem. 2018;13:186–98.
Article PubMed CAS Google Scholar
Hofny HA, Mohamed MFA, Gomaa HAM, Abdel-Aziz SA, Youssif BGM, El-koussi NA, et al. Design, synthesis, and antibacterial evaluation of new quinoline-1,3,4-oxadiazole and quinoline-1,2,4-triazole hybrids as potential inhibitors of DNA gyrase and topoisomerase IV. Bioorg Chem. 2021;112:104920.
留言 (0)