Kim YH, Kim GH, Yoon KS, Shankar S, Rhim JW. Comparative antibacterial and antifungal activities of sulfur nanoparticles capped with chitosan. Microb Pathog. 2020b;144:1–6. https://doi.org/10.1016/j.micpath.2020.104178
Rai M, Ingle AP, Paralikar P. Sulfur and sulfur nanoparticles as potential antimicrobials: from traditional medicine to nanomedicine. Expert Rev Anti Infect Ther. 2016;14:969–78. https://doi.org/10.1080/14787210.2016.1221340
Article CAS PubMed Google Scholar
Pathania S, Narang RK, Rawal RK. Role of sulphur-heterocycles in medicinal chemistry: an update. Eur J Med Chem. 2019;180:486–508. https://doi.org/10.1016/j.ejmech.2019.07.043
Article CAS PubMed Google Scholar
Scott KA, Njardarson JT. Analysis of US FDA-approved drugs containing sulfur atoms. Top Curr Chem. 2018;376:1–34. https://doi.org/10.1007/s41061-018-0184-5
Umbreen S, Lubega J, Loake GJ. Sulfur: the heart of nitric oxide-dependent redox signalling. J Exp Bot. 2019;70:4279–86. https://doi.org/10.1093/jxb/erz135
Article CAS PubMed Google Scholar
Ilardi EA, Vitaku E, Njardarson JT. Data-mining for sulfur and fluorine: an evaluation of pharmaceuticals to reveal opportunities for drug design and discovery. J Med Chem. 2014;57:2832–42. https://doi.org/10.1021/jm401375q
Article CAS PubMed Google Scholar
Feng M, Tang B H, Liang S, Jiang X. Sulfur containing scaffolds in drugs: synthesis and application in medicinal chemistry. Curr Top Med Chem. 2016;16:1200–16. https://doi.org/10.2174/1568026615666150915111741
Article CAS PubMed PubMed Central Google Scholar
Blažević I, Montaut S, Burčul F, Olsen CE, Burow M, Rollin P, et al. Glucosinolate structural diversity, identification, chemical synthesis and metabolism in plants. Phytochemistry. 2020;169:1–57. https://doi.org/10.1016/j.phytochem.2019.112100
Bischoff KL. Glucosinolates. In: Nutraceuticals Efficacy, Safety and Toxicity. Elsevier, 2016;551–4. https://doi.org/10.1016/B978-0-12-802147-7.00040-1
Gioia F, Pinela J, Haro Bailón A. et al. The dilemma of “good” and “bad” glucosinolates and the potential to regulate their content. In Glucosinolates: properties, recovery, and applications. Elsevier, 2020;1–45. https://doi.org/10.1016/B978-0-12-816493-8.00001-9
Blažević I, Montaut S, Burčul F, Rollin P. Glucosinolates: novel sources and biological potential. In: Mérillon, JM., Ramawat, K. (eds) Glucosinolates. Reference series in phytochemistry. Springer, Cham. 2017. pp 3–60. https://doi.org/10.1007/978-3-319-26479-0_1-1
Pardini A, Tamasi G, De Rocco F, Bonechi C, Consumi M, Leone G, et al. Kinetics of glucosinolate hydrolysis by myrosinase in Brassicaceae tissues: a high-performance liquid chromatography approach. Food Chem. 2021;355:129634. https://doi.org/10.1016/j.foodchem.2021.129634
Article CAS PubMed Google Scholar
Castro-Torres IG, Castro-Torres VA, Hernández-Lozano M, Naranjo-Rodríguez EB, Domínguez-Ortiz MÁ. Glucosinolates and metabolism. Elsevier Inc; 2019. https://doi.org/10.1016/B978-0-12-816493-8.00004-4
Lobo MG, Hounsome N, Hounsome B. Biochemistry of vegetables: secondary metabolites in vegetables-terpenoids, phenolics, alkaloids, and sulfur-containing compounds. In: Handbook of vegetables and vegetable processing. 2nd ed. 2018. pp. 47–82. https://doi.org/10.1002/9781119098935.ch3
Sønderby IE, Geu-Flores F, Halkier BA. Biosynthesis of glucosinolates—gene discovery and beyond. Trends Plant Sci. 2010a;15:283–90. https://doi.org/10.1016/j.tplants.2010.02.005
Article CAS PubMed Google Scholar
Sánchez-Pujante PJ, Borja-Martínez M, Pedreño MÁ, Almagro L. Biosynthesis and bioactivity of glucosinolates and their production in plant in vitro cultures. Planta. 2017;246:19–32. https://doi.org/10.1007/s00425-017-2705-9
Article CAS PubMed Google Scholar
Lerman A, Lockwood B. Nutraceuticals in veterinary medicine. Cham: Springer International Publishing; 2019.
Prinz M, Priller J, Sisodia SS, Ransohoff RM. Heterogeneity of CNS myeloid cells and their roles in neurodegeneration. Nat Neurosci. 2011;14:1227–35. https://doi.org/10.1038/nn.2923
Article CAS PubMed Google Scholar
Slobodkin AI, Slobodkina GB. Diversity of sulfur-disproportionating microorganisms. Microbiology. 2019;88:509–22. https://doi.org/10.1134/S0026261719050138
Hai Y, Wei M-Y, Wang C-Y, Gu YC, Shao CL. The intriguing chemistry and biology of sulfur-containing natural products from marine microorganisms (1987–2020). Mar Life Sci Technol. 2021;3:488–518. https://doi.org/10.1007/s42995-021-00101-2.
Article CAS PubMed PubMed Central Google Scholar
Barba FJ, Esteve MJ, Frígola A. Bioactive components from leaf vegetable products. In: In Studies in Natural Products Chemistry; Elsevier B.V. 2014;41:321–46. https://doi.org/10.1016/B978-0-444-63294-4.00011-5
Wu X, Huang H, Childs H, Wu Y, Yu L, Pehrsson PR. Glucosinolates in Brassica vegetables: characterization and factors that influence distribution, content, and intake. Annu Rev Food Sci Technol. 2021;12:485–511. https://doi.org/10.1146/annurev-food-070620-025744
Article CAS PubMed Google Scholar
Bischoff, KL. Glucosinolates. In Nutraceuticals: Efficacy, Safety and Toxicity; Elsevier, 2021;903–9. https://doi.org/10.1016/B978-0-12-821038-3.00053-7
Tacer-Caba, Z. Different Sources of Glucosinolates and Their Derivatives. In Glucosinolates: Properties, Recovery, and Applications; Elsevier, 2019;143–80. https://doi.org/10.1016/B978-0-12-816493-8.00005-6
Kivipelto M, Mangialasche F, Ngandu T. Lifestyle interventions to prevent cognitive impairment, dementia and Alzheimer disease. Nat Rev Neurol. 2018;14:653–66. https://doi.org/10.1038/s41582-018-0070-3
Marras C, Canning CG, Goldman SM. Environment, lifestyle, and Parkinson’s disease: implications for prevention in the next decade. Mov Disord. 2019;34:801–11. https://doi.org/10.1002/mds.27720
Rani V, Deep G, Singh RK, Palle K, Yadav UC. Oxidative stress and metabolic disorders: pathogenesis and therapeutic strategies. Life Sci. 2016;148:183–93. https://doi.org/10.1016/j.lfs.2016.02.002
Article CAS PubMed Google Scholar
Sosa V, Moliné T, Somoza R, Paciucci R, Kondoh H, LLeonart ME. Oxidative stress and cancer: an overview. Ageing Res Rev. 2013;12:376–90.
Article CAS PubMed Google Scholar
Chikara S, Nagaprashantha LD, Singhal J, Horne D, Awasthi S, Singhal SS. Oxidative stress and dietary phytochemicals: role in cancer chemoprevention and treatment. Cancer Lett. 2018;413:122–34.
Article CAS PubMed Google Scholar
Alberg AJ, Samet JM. Epidemiology of lung cancer *. Chest. 2003;123:21S–49S. https://doi.org/10.1378/chest.123.1
Harbeck N, Penault-Llorca F, Cortes J, Gnant M, Houssami N, Poortmans P, et al. Breast cancer. Nat Rev Dis Primers. 2019;5:1–31. https://doi.org/10.1038/s41572-019-0111-2
Travis WD. Pathology of lung cancer. Clin Chest Med. 2011;32:669–92. https://doi.org/10.1016/j.ccm.2011.08.005
Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022;72:7–33. https://doi.org/10.3322/caac.21708
Engle K, Kumar G. Cancer multidrug-resistance reversal by ABCB1 inhibition: a recent update. Eur J Med Chem. 2022;239:1–24. https://doi.org/10.1016/j.ejmech.2022.114542
Damare R, Engle K, Kumar G. Targeting epidermal growth factor receptor and its downstream signaling pathways by natural products: a mechanistic insight. Phytother Res. 2024;38:1–42. https://doi.org/10.1002/ptr.8166
Nygren P. What is cancer chemotherapy? Acta Oncol. 2001;40:166–74. https://doi.org/10.1080/02841860151116204
Article CAS PubMed Google Scholar
Crooker K, Aliani R, Ananth M, Arnold L, Anant S, Thomas SM. A review of promising natural chemopreventive agents for head and neck cancer. Cancer Prev Res. 2018;11:441–50. https://doi.org/10.1158/1940-6207.CAPR-17-0419
留言 (0)