Naturally occurring organosulfur for treating metabolic disorders and infectious diseases

Kim YH, Kim GH, Yoon KS, Shankar S, Rhim JW. Comparative antibacterial and antifungal activities of sulfur nanoparticles capped with chitosan. Microb Pathog. 2020b;144:1–6. https://doi.org/10.1016/j.micpath.2020.104178

Article  CAS  Google Scholar 

Rai M, Ingle AP, Paralikar P. Sulfur and sulfur nanoparticles as potential antimicrobials: from traditional medicine to nanomedicine. Expert Rev Anti Infect Ther. 2016;14:969–78. https://doi.org/10.1080/14787210.2016.1221340

Article  CAS  PubMed  Google Scholar 

Pathania S, Narang RK, Rawal RK. Role of sulphur-heterocycles in medicinal chemistry: an update. Eur J Med Chem. 2019;180:486–508. https://doi.org/10.1016/j.ejmech.2019.07.043

Article  CAS  PubMed  Google Scholar 

Scott KA, Njardarson JT. Analysis of US FDA-approved drugs containing sulfur atoms. Top Curr Chem. 2018;376:1–34. https://doi.org/10.1007/s41061-018-0184-5

Article  CAS  Google Scholar 

Umbreen S, Lubega J, Loake GJ. Sulfur: the heart of nitric oxide-dependent redox signalling. J Exp Bot. 2019;70:4279–86. https://doi.org/10.1093/jxb/erz135

Article  CAS  PubMed  Google Scholar 

Ilardi EA, Vitaku E, Njardarson JT. Data-mining for sulfur and fluorine: an evaluation of pharmaceuticals to reveal opportunities for drug design and discovery. J Med Chem. 2014;57:2832–42. https://doi.org/10.1021/jm401375q

Article  CAS  PubMed  Google Scholar 

Feng M, Tang B H, Liang S, Jiang X. Sulfur containing scaffolds in drugs: synthesis and application in medicinal chemistry. Curr Top Med Chem. 2016;16:1200–16. https://doi.org/10.2174/1568026615666150915111741

Article  CAS  PubMed  PubMed Central  Google Scholar 

Blažević I, Montaut S, Burčul F, Olsen CE, Burow M, Rollin P, et al. Glucosinolate structural diversity, identification, chemical synthesis and metabolism in plants. Phytochemistry. 2020;169:1–57. https://doi.org/10.1016/j.phytochem.2019.112100

Article  CAS  Google Scholar 

Bischoff KL. Glucosinolates. In: Nutraceuticals Efficacy, Safety and Toxicity. Elsevier, 2016;551–4. https://doi.org/10.1016/B978-0-12-802147-7.00040-1

Gioia F, Pinela J, Haro Bailón A. et al. The dilemma of “good” and “bad” glucosinolates and the potential to regulate their content. In Glucosinolates: properties, recovery, and applications. Elsevier, 2020;1–45. https://doi.org/10.1016/B978-0-12-816493-8.00001-9

Blažević I, Montaut S, Burčul F, Rollin P. Glucosinolates: novel sources and biological potential. In: Mérillon, JM., Ramawat, K. (eds) Glucosinolates. Reference series in phytochemistry. Springer, Cham. 2017. pp 3–60. https://doi.org/10.1007/978-3-319-26479-0_1-1

Pardini A, Tamasi G, De Rocco F, Bonechi C, Consumi M, Leone G, et al. Kinetics of glucosinolate hydrolysis by myrosinase in Brassicaceae tissues: a high-performance liquid chromatography approach. Food Chem. 2021;355:129634. https://doi.org/10.1016/j.foodchem.2021.129634

Article  CAS  PubMed  Google Scholar 

Castro-Torres IG, Castro-Torres VA, Hernández-Lozano M, Naranjo-Rodríguez EB, Domínguez-Ortiz MÁ. Glucosinolates and metabolism. Elsevier Inc; 2019. https://doi.org/10.1016/B978-0-12-816493-8.00004-4

Lobo MG, Hounsome N, Hounsome B. Biochemistry of vegetables: secondary metabolites in vegetables-terpenoids, phenolics, alkaloids, and sulfur-containing compounds. In: Handbook of vegetables and vegetable processing. 2nd ed. 2018. pp. 47–82. https://doi.org/10.1002/9781119098935.ch3

Sønderby IE, Geu-Flores F, Halkier BA. Biosynthesis of glucosinolates—gene discovery and beyond. Trends Plant Sci. 2010a;15:283–90. https://doi.org/10.1016/j.tplants.2010.02.005

Article  CAS  PubMed  Google Scholar 

Sánchez-Pujante PJ, Borja-Martínez M, Pedreño MÁ, Almagro L. Biosynthesis and bioactivity of glucosinolates and their production in plant in vitro cultures. Planta. 2017;246:19–32. https://doi.org/10.1007/s00425-017-2705-9

Article  CAS  PubMed  Google Scholar 

Lerman A, Lockwood B. Nutraceuticals in veterinary medicine. Cham: Springer International Publishing; 2019.

Prinz M, Priller J, Sisodia SS, Ransohoff RM. Heterogeneity of CNS myeloid cells and their roles in neurodegeneration. Nat Neurosci. 2011;14:1227–35. https://doi.org/10.1038/nn.2923

Article  CAS  PubMed  Google Scholar 

Slobodkin AI, Slobodkina GB. Diversity of sulfur-disproportionating microorganisms. Microbiology. 2019;88:509–22. https://doi.org/10.1134/S0026261719050138

Article  CAS  Google Scholar 

Hai Y, Wei M-Y, Wang C-Y, Gu YC, Shao CL. The intriguing chemistry and biology of sulfur-containing natural products from marine microorganisms (1987–2020). Mar Life Sci Technol. 2021;3:488–518. https://doi.org/10.1007/s42995-021-00101-2.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barba FJ, Esteve MJ, Frígola A. Bioactive components from leaf vegetable products. In: In Studies in Natural Products Chemistry; Elsevier B.V. 2014;41:321–46. https://doi.org/10.1016/B978-0-444-63294-4.00011-5

Wu X, Huang H, Childs H, Wu Y, Yu L, Pehrsson PR. Glucosinolates in Brassica vegetables: characterization and factors that influence distribution, content, and intake. Annu Rev Food Sci Technol. 2021;12:485–511. https://doi.org/10.1146/annurev-food-070620-025744

Article  CAS  PubMed  Google Scholar 

Bischoff, KL. Glucosinolates. In Nutraceuticals: Efficacy, Safety and Toxicity; Elsevier, 2021;903–9. https://doi.org/10.1016/B978-0-12-821038-3.00053-7

Tacer-Caba, Z. Different Sources of Glucosinolates and Their Derivatives. In Glucosinolates: Properties, Recovery, and Applications; Elsevier, 2019;143–80. https://doi.org/10.1016/B978-0-12-816493-8.00005-6

Kivipelto M, Mangialasche F, Ngandu T. Lifestyle interventions to prevent cognitive impairment, dementia and Alzheimer disease. Nat Rev Neurol. 2018;14:653–66. https://doi.org/10.1038/s41582-018-0070-3

Article  PubMed  Google Scholar 

Marras C, Canning CG, Goldman SM. Environment, lifestyle, and Parkinson’s disease: implications for prevention in the next decade. Mov Disord. 2019;34:801–11. https://doi.org/10.1002/mds.27720

Article  PubMed  Google Scholar 

Rani V, Deep G, Singh RK, Palle K, Yadav UC. Oxidative stress and metabolic disorders: pathogenesis and therapeutic strategies. Life Sci. 2016;148:183–93. https://doi.org/10.1016/j.lfs.2016.02.002

Article  CAS  PubMed  Google Scholar 

Sosa V, Moliné T, Somoza R, Paciucci R, Kondoh H, LLeonart ME. Oxidative stress and cancer: an overview. Ageing Res Rev. 2013;12:376–90.

Article  CAS  PubMed  Google Scholar 

Chikara S, Nagaprashantha LD, Singhal J, Horne D, Awasthi S, Singhal SS. Oxidative stress and dietary phytochemicals: role in cancer chemoprevention and treatment. Cancer Lett. 2018;413:122–34.

Article  CAS  PubMed  Google Scholar 

Alberg AJ, Samet JM. Epidemiology of lung cancer *. Chest. 2003;123:21S–49S. https://doi.org/10.1378/chest.123.1

Article  PubMed  Google Scholar 

Harbeck N, Penault-Llorca F, Cortes J, Gnant M, Houssami N, Poortmans P, et al. Breast cancer. Nat Rev Dis Primers. 2019;5:1–31. https://doi.org/10.1038/s41572-019-0111-2

Article  Google Scholar 

Travis WD. Pathology of lung cancer. Clin Chest Med. 2011;32:669–92. https://doi.org/10.1016/j.ccm.2011.08.005

Article  PubMed  Google Scholar 

Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022;72:7–33. https://doi.org/10.3322/caac.21708

Article  PubMed  Google Scholar 

Engle K, Kumar G. Cancer multidrug-resistance reversal by ABCB1 inhibition: a recent update. Eur J Med Chem. 2022;239:1–24. https://doi.org/10.1016/j.ejmech.2022.114542

Article  CAS  Google Scholar 

Damare R, Engle K, Kumar G. Targeting epidermal growth factor receptor and its downstream signaling pathways by natural products: a mechanistic insight. Phytother Res. 2024;38:1–42. https://doi.org/10.1002/ptr.8166

Article  CAS  Google Scholar 

Nygren P. What is cancer chemotherapy? Acta Oncol. 2001;40:166–74. https://doi.org/10.1080/02841860151116204

Article  CAS  PubMed  Google Scholar 

Crooker K, Aliani R, Ananth M, Arnold L, Anant S, Thomas SM. A review of promising natural chemopreventive agents for head and neck cancer. Cancer Prev Res. 2018;11:441–50. https://doi.org/10.1158/1940-6207.CAPR-17-0419

Article  Google Scholar 

留言 (0)

沒有登入
gif