Akimoto E, Kadoya T, Kajitani K, Emi A, Shigematsu H, Ohara M, Okada M (2018) Role of (18)F-PET/CT in Predicting prognosis of patients with breast Cancer after Neoadjuvant Chemotherapy. Clin Breast Cancer 18(1):45–52. https://doi.org/10.1016/j.clbc.2017.09.006
Antunovic L, De Sanctis R, Cozzi L, Kirienko M, Sagona A, Torrisi R, Sollini M (2019) PET/CT radiomics in breast cancer: promising tool for prediction of pathological response to neoadjuvant chemotherapy. Eur J Nucl Med Mol Imaging 46(7):1468–1477. https://doi.org/10.1007/s00259-019-04313-8
Asano Y, Kashiwagi S, Goto W, Takada K, Takahashi K, Hatano T, Ohira M (2018) Prediction of treatment response to neoadjuvant chemotherapy in breast Cancer by Subtype using tumor-infiltrating lymphocytes. Anticancer Res 38(4):2311–2321. https://doi.org/10.21873/anticanres.12476
Asaoka M, Narui K, Suganuma N, Chishima T, Yamada A, Sugae S, Ishikawa T (2019) Clinical and pathological predictors of recurrence in breast cancer patients achieving pathological complete response to neoadjuvant chemotherapy. Eur J Surg Oncol 45(12):2289–2294. https://doi.org/10.1016/j.ejso.2019.08.001
Braman NM, Etesami M, Prasanna P, Dubchuk C, Gilmore H, Tiwari P, Madabhushi A (2017) Intratumoral and peritumoral radiomics for the pretreatment prediction of pathological complete response to neoadjuvant chemotherapy based on breast DCE-MRI. Breast Cancer Res 19(1):57. https://doi.org/10.1186/s13058-017-0846-1
Article CAS PubMed PubMed Central Google Scholar
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424. https://doi.org/10.3322/caac.21492
Chen K, Yin G, Xu W (2022) Predictive value of (18)F-FDG PET/CT-Based Radiomics Model for Occult Axillary Lymph Node Metastasis in clinically node-negative breast Cancer. Diagnostics (Basel) 12(4). https://doi.org/10.3390/diagnostics12040997
Chen K, Wang J, Li S, Zhou W, Xu W (2023a) Predictive value of (18)F-FDG PET/CT-based radiomics model for neoadjuvant chemotherapy efficacy in breast cancer: a multi-scanner/center study with external validation. Eur J Nucl Med Mol Imaging 50(7):1869–1880. https://doi.org/10.1007/s00259-023-06150-2
Article CAS PubMed Google Scholar
Chen Q, Shao J, Xue T, Peng H, Li M, Duan S, Feng F (2023b) Intratumoral and peritumoral radiomics nomograms for the preoperative prediction of lymphovascular invasion and overall survival in non-small cell lung cancer. Eur Radiol 33(2):947–958. https://doi.org/10.1007/s00330-022-09109-3
Choi J, Laws A, Hu J, Barry W, Golshan M, King T (2018) Margins in breast-conserving surgery after Neoadjuvant Therapy. Ann Surg Oncol 25(12):3541–3547. https://doi.org/10.1245/s10434-018-6702-4
Connolly RM, Stearns V (2013) Current approaches for neoadjuvant chemotherapy in breast cancer. Eur J Pharmacol 717(1–3):58–66. https://doi.org/10.1016/j.ejphar.2013.02.057
Article CAS PubMed PubMed Central Google Scholar
Cortazar P, Zhang L, Untch M, Mehta K, Costantino JP, Wolmark N, von Minckwitz G (2014) Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis. Lancet 384(9938):164–172. https://doi.org/10.1016/s0140-6736(13)62422-8
de Visser KE, Joyce JA (2023) The evolving tumor microenvironment: from cancer initiation to metastatic outgrowth. Cancer Cell 41(3):374–403. https://doi.org/10.1016/j.ccell.2023.02.016
Article CAS PubMed Google Scholar
Denkert C, von Minckwitz G, Darb-Esfahani S, Lederer B, Heppner BI, Weber KE, Loibl S (2018) Tumour-infiltrating lymphocytes and prognosis in different subtypes of breast cancer: a pooled analysis of 3771 patients treated with neoadjuvant therapy. Lancet Oncol 19(1):40–50. https://doi.org/10.1016/s1470-2045(17)30904-x
Fan M, Wu G, Cheng H, Zhang J, Shao G, Li L (2017) Radiomic analysis of DCE-MRI for prediction of response to neoadjuvant chemotherapy in breast cancer patients. Eur J Radiol 94:140–147. https://doi.org/10.1016/j.ejrad.2017.06.019
Article CAS PubMed Google Scholar
Groheux D (2022) FDG-PET/CT for primary staging and detection of recurrence of breast Cancer. Semin Nucl Med 52(5):508–519. https://doi.org/10.1053/j.semnuclmed.2022.05.001
Harbeck N, Gnant M (2017) Breast cancer. Lancet 389(10074):1134–1150. https://doi.org/10.1016/s0140-6736(16)31891-8
Huang X, Mai J, Huang Y, He L, Chen X, Wu X, Liu Z (2021) Radiomic Nomogram for Pretreatment Prediction of Pathologic Complete Response to neoadjuvant therapy in breast Cancer: predictive value of staging contrast-enhanced CT. Clin Breast Cancer 21(4):e388–e401. https://doi.org/10.1016/j.clbc.2020.12.004
Hwang HW, Jung H, Hyeon J, Park YH, Ahn JS, Im YH, Cho EY (2019) A nomogram to predict pathologic complete response (pCR) and the value of tumor-infiltrating lymphocytes (TILs) for prediction of response to neoadjuvant chemotherapy (NAC) in breast cancer patients. Breast Cancer Res Treat 173(2):255–266. https://doi.org/10.1007/s10549-018-4981-x
Article CAS PubMed Google Scholar
Jia JB, Wang WQ, Sun HC, Zhu XD, Liu L, Zhuang PY, Tang ZY (2010) High expression of macrophage colony-stimulating factor-1 receptor in peritumoral liver tissue is associated with poor outcome in hepatocellular carcinoma after curative resection. Oncologist 15(7):732–743. https://doi.org/10.1634/theoncologist.2009-0170
Article CAS PubMed PubMed Central Google Scholar
Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RG, Granton P, Aerts HJ (2012) Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer 48(4):441–446. https://doi.org/10.1016/j.ejca.2011.11.036
Article PubMed PubMed Central Google Scholar
Li H, Yao L, Jin P, Hu L, Li X, Guo T, Yang K (2018) MRI and PET/CT for evaluation of the pathological response to neoadjuvant chemotherapy in breast cancer: a systematic review and meta-analysis. Breast 40:106–115. https://doi.org/10.1016/j.breast.2018.04.018
Li P, Wang X, Xu C, Liu C, Zheng C, Fulham MJ, Huang G (2020) (18)F-FDG PET/CT radiomic predictors of pathologic complete response (pCR) to neoadjuvant chemotherapy in breast cancer patients. Eur J Nucl Med Mol Imaging 47(5):1116–1126. https://doi.org/10.1007/s00259-020-04684-3
Article CAS PubMed Google Scholar
Long-term outcomes (2018) for neoadjuvant versus adjuvant chemotherapy in early breast cancer. Lancet Oncol 19(1):27–39. https://doi.org/10.1016/s1470-2045(17)30777-5. meta-analysis of individual patient data from ten randomised trials
Mao N, Shi Y, Lian C, Wang Z, Zhang K, Xie H, Dai Y (2022) Intratumoral and peritumoral radiomics for preoperative prediction of neoadjuvant chemotherapy effect in breast cancer based on contrast-enhanced spectral mammography. Eur Radiol 32(5):3207–3219. https://doi.org/10.1007/s00330-021-08414-7
Article CAS PubMed Google Scholar
Mayerhoefer ME, Materka A, Langs G, Häggström I, Szczypiński P, Gibbs P, Cook G (2020) Introduction to Radiomics. J Nucl Med 61(4):488–495. https://doi.org/10.2967/jnumed.118.222893
Article CAS PubMed PubMed Central Google Scholar
Ming Y, Wu N, Qian T, Li X, Wan DQ, Li C, Wu N (2020) Progress and Future trends in PET/CT and PET/MRI molecular imaging approaches for breast Cancer. Front Oncol 10:1301. https://doi.org/10.3389/fonc.2020.01301
Article PubMed PubMed Central Google Scholar
Montemurro F, Nuzzolese I, Ponzone R (2020) Neoadjuvant or adjuvant chemotherapy in early breast cancer? Expert Opin Pharmacother 21(9):1071–1082. https://doi.org/10.1080/14656566.2020.1746273
Morrow M, Van Zee KJ, Solin LJ, Houssami N, Chavez-MacGregor M, Harris JR, Moran MS (2016) Society of Surgical Oncology-American Society for Radiation Oncology-American Society of Clinical Oncology consensus guideline on margins for breast-conserving surgery with whole-breast irradiation in Ductal Carcinoma in situ. J Clin Oncol 34(33):4040–4046. https://doi.org/10.1200/jco.2016.68.3573
留言 (0)