Nanoparticles and bone microenvironment: a comprehensive review for malignant bone tumor diagnosis and treatment

Xiang H, Yang Q, Gao Y, Zhu D, Pan S, Xu T, et al. Cocrystal strategy toward multifunctional 3D-printing scaffolds enables NIR‐activated photonic osteosarcoma hyperthermia and enhanced bone defect regeneration. Adv Funct Mater. 2020;30(25):1909938.

Article  CAS  Google Scholar 

Díaz ECG, Sinha S, Avedian RS, Yang F. Tissue-engineered 3D models for elucidating primary and metastatic bone cancer progression. Acta Biomater. 2019;99:18–32.

Article  PubMed Central  Google Scholar 

Meltzer PS, Helman LJ. New Horizons in the Treatment of Osteosarcoma. N Engl J Med. 2021;385(22):2066–76.

Article  CAS  PubMed  Google Scholar 

Gill J, Gorlick R. Advancing therapy for osteosarcoma. Nat Rev Clin Oncol. 2021;18(10):609–24.

Article  PubMed  Google Scholar 

Chen C, Xie L, Ren T, Huang Y, Xu J, Guo W. Immunotherapy for osteosarcoma: fundamental mechanism, rationale, and recent breakthroughs. Cancer Lett. 2021;500:1–10.

Article  CAS  PubMed  Google Scholar 

Shoaib Z, Fan TM, Irudayaraj JMK. Osteosarcoma mechanobiology and therapeutic targets. Br J Pharmacol. 2022;179(2):201–17.

Article  CAS  PubMed  Google Scholar 

Yang C, Tian Y, Zhao F, Chen Z, Su P, Li Y, et al. Bone microenvironment and osteosarcoma metastasis. Int J Mol Sci. 2020;21(19):6985.

Li S, Zhang H, Liu J, Shang G. Targeted therapy for osteosarcoma: a review. J Cancer Res Clin Oncol. 2023;149(9):6785–97.

Article  PubMed  Google Scholar 

Kansara M, Teng MW, Smyth MJ, Thomas DM. Translational biology of osteosarcoma. Nat Rev Cancer. 2014;14(11):722–35.

Article  CAS  PubMed  Google Scholar 

Li Z, Li X, Xu D, Chen X, Li S, Zhang L, et al. An update on the roles of circular RNAs in osteosarcoma. Cell Prolif. 2021;54(1):e12936.

Article  CAS  PubMed  Google Scholar 

Longhi A, Ferrari S, Bacci G, Specchia S. Long-term follow-up of patients with doxorubicin-induced cardiac toxicity after chemotherapy for osteosarcoma. Anticancer Drugs. 2007;18(6):737–44.

Article  CAS  PubMed  Google Scholar 

Patino-Garcia A, Zalacain M, Marrodan L, San-Julian M, Sierrasesumaga L. Methotrexate in pediatric osteosarcoma: response and toxicity in relation to genetic polymorphisms and dihydrofolate reductase and reduced folate carrier 1 expression. J Pediatr. 2009;154(5):688–93.

Article  CAS  PubMed  Google Scholar 

Coleman RE, Croucher PI, Padhani AR, Clezardin P, Chow E, Fallon M, et al. Bone metastases. Nat Rev Dis Primers. 2020;6(1):83.

Article  PubMed  Google Scholar 

Clezardin P, Coleman R, Puppo M, Ottewell P, Bonnelye E, Paycha F, et al. Bone metastasis: mechanisms, therapies, and biomarkers. Physiol Rev. 2021;101(3):797–855.

Article  CAS  PubMed  Google Scholar 

Himelstein AL, Foster JC, Khatcheressian JL, Roberts JD, Seisler DK, Novotny PJ, et al. Effect of Longer-Interval vs Standard Dosing of Zoledronic Acid on skeletal events in patients with bone metastases: a Randomized Clinical Trial. JAMA. 2017;317(1):48–58.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gartrell BA, Saad F. Managing bone metastases and reducing skeletal related events in prostate cancer. Nat Rev Clin Oncol. 2014;11(6):335–45.

Article  CAS  PubMed  Google Scholar 

Cadieux B, Coleman R, Jafarinasabian P, Lipton A, Orlowski RZ, Saad F, et al. Experience with denosumab (XGEVA(R)) for prevention of skeletal-related events in the 10 years after approval. J Bone Oncol. 2022;33:100416.

D’Oronzo S, Coleman R, Brown J, Silvestris F. Metastatic bone disease: Pathogenesis and therapeutic options: up-date on bone metastasis management. J Bone Oncol. 2019;15:100205.

PubMed  Google Scholar 

Zhang W, Bado I, Wang H, Lo HC, Zhang XH. Bone metastasis: find your niche and fit in. Trends Cancer. 2019;5(2):95–110.

Article  PubMed  PubMed Central  Google Scholar 

He Y, Luo W, Liu Y, Wang Y, Ma C, Wu Q, et al. IL-20RB mediates tumoral response to osteoclastic niches and promotes bone metastasis of lung cancer. J Clin Invest. 2022;132(20):e157917.

Pei Z, Lei H, Cheng L. Bioactive inorganic nanomaterials for cancer theranostics. Chem Soc Rev. 2023;52(6):2031–81.

Article  CAS  PubMed  Google Scholar 

Cheng L, Wang X, Gong F, Liu T. Liu: 2D nanomaterials for Cancer Theranostic Applications. Adv Mater. 2020;32(13):e1902333.

Article  PubMed  Google Scholar 

Song W, Musetti SN, Huang L. Nanomaterials for cancer immunotherapy. Biomaterials. 2017;148:16–30.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tang L, Zhang A, Zhang Z, Zhao Q, Li J, Mei Y, et al. Multifunctional inorganic nanomaterials for cancer photoimmunotherapy. Cancer Commun (Lond). 2022;42(2):141–63.

Article  PubMed  Google Scholar 

Li J, Lu W, Yang Y, Xiang R, Ling Y, Yu C, et al. Hybrid nanomaterials for Cancer Immunotherapy. Adv Sci (Weinh). 2023;10(6):e2204932.

Article  PubMed  Google Scholar 

Li X, Lovell JF, Yoon J, Chen X. Clinical development and potential of photothermal and photodynamic therapies for cancer. Nat Rev Clin Oncol. 2020;17(11):657–74.

Article  PubMed  Google Scholar 

Ren Y, Yan Y, Qi H. Photothermal conversion and transfer in photothermal therapy: from macroscale to nanoscale. Adv Colloid Interface Sci. 2022;308:102753.

Xin J, Deng C, Aras O, Zhou M, Wu C, An F. Chemodynamic nanomaterials for cancer theranostics. J Nanobiotechnol. 2021;19(1):192.

Article  CAS  Google Scholar 

Wang WD, Guo YY, Yang ZL, Su GL. Sun: Sniping Cancer Stem cells with nanomaterials. ACS Nano. 2023;17(23):23262–98.

Article  CAS  PubMed  Google Scholar 

Ding S, Chen L, Liao J, Huo Q, Wang Q, Tian G, et al. Harnessing hafnium-based nanomaterials for Cancer diagnosis and therapy. Small. 2023;19(32):e2300341.

Article  PubMed  Google Scholar 

Pellico J, Gawne PJ. d. R. R: Radiolabelling of nanomaterials for medical imaging and therapy. Chem Soc Rev. 2021;50(5):3355–423.

Article  CAS  PubMed  Google Scholar 

M PA, Pardhiya S, Rajamani P. Carbon dots: an excellent fluorescent probe for Contaminant Sensing and Remediation. Small. 2022;18(15):e2105579.

Article  Google Scholar 

Wang Y, Wang W, Wang X, Wu H, Zhao W, Zhao C. Immune-stealth carboxymethyl chitosan-based nanomaterials for magnetic resonance imaging-guided photothermal therapy. Carbohydr Polym. 2022;288:119382.

Sun X, Cai W, Chen X. Positron emission tomography imaging using radiolabeled inorganic nanomaterials. Acc Chem Res. 2015;48(2):286–94.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Salhotra A, Shah HN, Levi B, Longaker MT. Mechanisms of bone development and repair. Nat Rev Mol Cell Biol. 2020;21(11):696–711.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hu W, Chen Y, Dou C, Dong S. Microenvironment in subchondral bone: predominant regulator for the treatment of osteoarthritis. Ann Rheum Dis. 2021;80(4):413–22.

Article  CAS  PubMed  Google Scholar 

Xiong Y, Mi BB, Lin Z, Hu YQ, Yu L, Zha KK, et al. The role of the immune microenvironment in bone, cartilage, and soft tissue regeneration: from mechanism to therapeutic opportunity. Mil Med Res. 2022;9(1):65.

CAS  PubMed  PubMed Central  Google Scholar 

Yip RKH, Rimes JS, Capaldo BD, Vaillant F, Mouchemore KA, Pal B, et al. Mammary tumour cells remodel the bone marrow vascular microenvironment to support metastasis. Nat Commun. 2021;12(1):6920.

留言 (0)

沒有登入
gif