Sadok I, Jędruchniewicz K. Dietary kynurenine pathway metabolites-source, fate, and chromatographic determinations. Int J Mol Sci. 2023;24:24. https://doi.org/10.3390/ijms242216304.
Jamshed L, Debnath A, Jamshed S, Wish JV, Raine JC, Tomy GT, et al. An emerging cross-species marker for organismal health: tryptophan-kynurenine pathway. Int J Mol Sci. 2022;23:23. https://doi.org/10.3390/ijms23116300.
Nongonierma AB, FitzGerald RJ. Milk proteins as a source of tryptophan-containing bioactive peptides. Food Funct. 2015;6:2115–27. https://doi.org/10.1039/c5fo00407a.
Article CAS PubMed Google Scholar
Attenburrow MJ, Williams C, Odontiadis J, Powell J, Van de Ouderaa F, Williams M, et al. The effect of a nutritional source of tryptophan on dieting-induced changes in brain 5-HT function. Psychol Med. 2003;33:1381–6. https://doi.org/10.1017/s0033291703008547.
Article CAS PubMed Google Scholar
Wyatt M, Greathouse KL. Targeting Dietary and Microbial Tryptophan-Indole Metabolism as Therapeutic Approaches to Colon Cancer. Nutrients. 2021;13. https://doi.org/10.3390/nu13041189.
Melhem NJ, Taleb S. Tryptophan: from diet to cardiovascular diseases. Int J Mol Sci. 2021;22. https://doi.org/10.3390/ijms22189904.
Tsuji A, Ikeda Y, Yoshikawa S, Taniguchi K, Sawamura H, Morikawa S, et al. The tryptophan and kynurenine pathway involved in the development of immune-related diseases. Int J Mol Sci. 2023;24:24. https://doi.org/10.3390/ijms24065742.
Le Floc’h N, Otten W, Merlot E. Tryptophan metabolism, from nutrition to potential therapeutic applications. Amino Acids. 2011;41:1195–205. https://doi.org/10.1007/s00726-010-0752-7.
Article CAS PubMed Google Scholar
Thomas SR, Stocker R. Redox reactions related to indoleamine 2,3-dioxygenase and tryptophan metabolism along the kynurenine pathway. Redox Rep. 1999;4:199–220. https://doi.org/10.1179/135100099101534927.
Article CAS PubMed Google Scholar
Hinkley JM, Yu GX, Standley RA, Distefano G, Tolstikov V, Narain NR, et al. Exercise and ageing impact the kynurenine/tryptophan pathway and acylcarnitine metabolite pools in skeletal muscle of older adults. J Physiol. 2023;601:2165–88. https://doi.org/10.1113/jp284142.
Article CAS PubMed Google Scholar
Badawy AA, Namboodiri AM, Moffett JR. The end of the road for the tryptophan depletion concept in pregnancy and infection. Clin Sci (Lond). 2016;130:1327–33. https://doi.org/10.1042/cs20160153.
Article CAS PubMed Google Scholar
Lai W, Huang Z, Li S, Li XG, Luo D. Kynurenine pathway metabolites modulated the comorbidity of IBD and depressive symptoms through the immune response. Int Immunopharmacol. 2023;117: 109840. https://doi.org/10.1016/j.intimp.2023.109840.
Article CAS PubMed Google Scholar
Curzon G, Bridges PK. Tryptophan metabolism in depression. J Neurol Neurosurg Psychiatry. 1970;33:698–704. https://doi.org/10.1136/jnnp.33.5.698.
Article CAS PubMed PubMed Central Google Scholar
van der Goot AT, Nollen EA. Tryptophan metabolism: entering the field of aging and age-related pathologies. Trends Mol Med. 2013;19:336–44. https://doi.org/10.1016/j.molmed.2013.02.007.
Article CAS PubMed Google Scholar
Anaya JM, Bollag WB, Hamrick MW, Isales CM. The role of tryptophan metabolites in musculoskeletal stem cell aging. Int J Mol Sci. 2020;21:21. https://doi.org/10.3390/ijms21186670.
Galligan JJ. Beneficial actions of microbiota-derived tryptophan metabolites. Neurogastroenterol Motil. 2018;30:30. https://doi.org/10.1111/nmo.13283.
Christen S, Peterhans E, Stocker R. Antioxidant activities of some tryptophan metabolites: possible implication for inflammatory diseases. Proc Natl Acad Sci U S A. 1990;87:2506–10. https://doi.org/10.1073/pnas.87.7.2506.
Article CAS PubMed PubMed Central Google Scholar
Maddison DC, Giorgini F. The kynurenine pathway and neurodegenerative disease. Semin Cell Dev Biol. 2015;40:134–41. https://doi.org/10.1016/j.semcdb.2015.03.002.
Article CAS PubMed Google Scholar
Gargaro M, Scalisi G, Manni G, Briseño CG, Bagadia P, Durai V, et al. Indoleamine 2,3-dioxygenase 1 activation in mature cDC1 promotes tolerogenic education of inflammatory cDC2 via metabolic communication. Immunity. 2022;55:1032–50.
Article CAS PubMed PubMed Central Google Scholar
Koper JE, Troise AD, Loonen LM, Vitaglione P, Capuano E, Fogliano V, et al. Tryptophan supplementation increases the production of microbial-derived AhR agonists in an in vitro simulator of intestinal microbial ecosystem. J Agric Food Chem. 2022;70:3958–68. https://doi.org/10.1021/acs.jafc.1c04145.
Article CAS PubMed PubMed Central Google Scholar
Liang X, Su T, Wu P, Dai Y, Chen Y, Wang Q, et al. Identification of paeoniflorin from Paeonia lactiflora pall. As an inhibitor of tryptophan 2,3-dioxygenase and assessment of its pharmacological effects on depressive mice. J Ethnopharmacol. 2023;317: 116714. https://doi.org/10.1016/j.jep.2023.116714.
Article CAS PubMed Google Scholar
Raghavan R, Anand NS, Wang G, Hong X, Pearson C, Zuckerman B, et al. Association between cord blood metabolites in tryptophan pathway and childhood risk of autism spectrum disorder and attention-deficit hyperactivity disorder. Transl Psychiatry. 2022;12:270. https://doi.org/10.1038/s41398-022-01992-0.
Article CAS PubMed PubMed Central Google Scholar
Sutanto CN, Loh WW, Kim JE. The impact of tryptophan supplementation on sleep quality: a systematic review, meta-analysis, and meta-regression. Nutr Rev. 2022;80:306–16. https://doi.org/10.1093/nutrit/nuab027.
Kennaway DJ. The mammalian gastro-intestinal tract is a NOT a major extra-pineal source of melatonin. J Pineal Res. 2023;75:e12906. https://doi.org/10.1111/jpi.12906.
Article CAS PubMed Google Scholar
Liaqat H, Parveen A, Kim SY. Neuroprotective natural products’ regulatory effects on depression via gut-brain axis targeting tryptophan. Nutrients. 2022;14:14. https://doi.org/10.3390/nu14163270.
Zhu Y, Yin L, Liu Q, Guan Y, Nie S, Zhu Y, et al. Tryptophan metabolic pathway plays a key role in the stress-induced emotional eating. Curr Res Food Sci. 2024;8: 100754. https://doi.org/10.1016/j.crfs.2024.100754.
Article CAS PubMed PubMed Central Google Scholar
Stone TW, Williams RO. Modulation of T cells by tryptophan metabolites in the kynurenine pathway. Trends Pharmacol Sci. 2023;44:442–56. https://doi.org/10.1016/j.tips.2023.04.006.
Article CAS PubMed Google Scholar
Gargaro M, Manni G, Scalisi G, Puccetti P, Fallarino F. Tryptophan metabolites at the crossroad of immune-cell interaction via the Aryl hydrocarbon receptor: implications for tumor immunotherapy. Int J Mol Sci. 2021;22:22. https://doi.org/10.3390/ijms22094644.
Günther J, Fallarino F, Fuchs D, Wirthgen E, Editorial. Immunomodulatory roles of tryptophan metabolites in inflammation and cancer. Front Immunol. 2020;11: 1497. https://doi.org/10.3389/fimmu.2020.01497.
Article CAS PubMed PubMed Central Google Scholar
Pathak S, Nadar R, Kim S, Liu K, Govindarajulu M, Cook P, et al. The influence of kynurenine metabolites on neurodegenerative pathologies. Int J Mol Sci. 2024;25:25. https://doi.org/10.3390/ijms25020853.
留言 (0)