Molecular mechanisms and therapeutic significance of Tryptophan Metabolism and signaling in cancer

Sadok I, Jędruchniewicz K. Dietary kynurenine pathway metabolites-source, fate, and chromatographic determinations. Int J Mol Sci. 2023;24:24. https://doi.org/10.3390/ijms242216304.

Article  CAS  Google Scholar 

Jamshed L, Debnath A, Jamshed S, Wish JV, Raine JC, Tomy GT, et al. An emerging cross-species marker for organismal health: tryptophan-kynurenine pathway. Int J Mol Sci. 2022;23:23. https://doi.org/10.3390/ijms23116300.

Article  CAS  Google Scholar 

Nongonierma AB, FitzGerald RJ. Milk proteins as a source of tryptophan-containing bioactive peptides. Food Funct. 2015;6:2115–27. https://doi.org/10.1039/c5fo00407a.

Article  CAS  PubMed  Google Scholar 

Attenburrow MJ, Williams C, Odontiadis J, Powell J, Van de Ouderaa F, Williams M, et al. The effect of a nutritional source of tryptophan on dieting-induced changes in brain 5-HT function. Psychol Med. 2003;33:1381–6. https://doi.org/10.1017/s0033291703008547.

Article  CAS  PubMed  Google Scholar 

Wyatt M, Greathouse KL. Targeting Dietary and Microbial Tryptophan-Indole Metabolism as Therapeutic Approaches to Colon Cancer. Nutrients. 2021;13. https://doi.org/10.3390/nu13041189.

Melhem NJ, Taleb S. Tryptophan: from diet to cardiovascular diseases. Int J Mol Sci. 2021;22. https://doi.org/10.3390/ijms22189904.

Tsuji A, Ikeda Y, Yoshikawa S, Taniguchi K, Sawamura H, Morikawa S, et al. The tryptophan and kynurenine pathway involved in the development of immune-related diseases. Int J Mol Sci. 2023;24:24. https://doi.org/10.3390/ijms24065742.

Article  CAS  Google Scholar 

Le Floc’h N, Otten W, Merlot E. Tryptophan metabolism, from nutrition to potential therapeutic applications. Amino Acids. 2011;41:1195–205. https://doi.org/10.1007/s00726-010-0752-7.

Article  CAS  PubMed  Google Scholar 

Thomas SR, Stocker R. Redox reactions related to indoleamine 2,3-dioxygenase and tryptophan metabolism along the kynurenine pathway. Redox Rep. 1999;4:199–220. https://doi.org/10.1179/135100099101534927.

Article  CAS  PubMed  Google Scholar 

Hinkley JM, Yu GX, Standley RA, Distefano G, Tolstikov V, Narain NR, et al. Exercise and ageing impact the kynurenine/tryptophan pathway and acylcarnitine metabolite pools in skeletal muscle of older adults. J Physiol. 2023;601:2165–88. https://doi.org/10.1113/jp284142.

Article  CAS  PubMed  Google Scholar 

Badawy AA, Namboodiri AM, Moffett JR. The end of the road for the tryptophan depletion concept in pregnancy and infection. Clin Sci (Lond). 2016;130:1327–33. https://doi.org/10.1042/cs20160153.

Article  CAS  PubMed  Google Scholar 

Lai W, Huang Z, Li S, Li XG, Luo D. Kynurenine pathway metabolites modulated the comorbidity of IBD and depressive symptoms through the immune response. Int Immunopharmacol. 2023;117: 109840. https://doi.org/10.1016/j.intimp.2023.109840.

Article  CAS  PubMed  Google Scholar 

Curzon G, Bridges PK. Tryptophan metabolism in depression. J Neurol Neurosurg Psychiatry. 1970;33:698–704. https://doi.org/10.1136/jnnp.33.5.698.

Article  CAS  PubMed  PubMed Central  Google Scholar 

van der Goot AT, Nollen EA. Tryptophan metabolism: entering the field of aging and age-related pathologies. Trends Mol Med. 2013;19:336–44. https://doi.org/10.1016/j.molmed.2013.02.007.

Article  CAS  PubMed  Google Scholar 

Anaya JM, Bollag WB, Hamrick MW, Isales CM. The role of tryptophan metabolites in musculoskeletal stem cell aging. Int J Mol Sci. 2020;21:21. https://doi.org/10.3390/ijms21186670.

Article  CAS  Google Scholar 

Galligan JJ. Beneficial actions of microbiota-derived tryptophan metabolites. Neurogastroenterol Motil. 2018;30:30. https://doi.org/10.1111/nmo.13283.

Article  CAS  Google Scholar 

Christen S, Peterhans E, Stocker R. Antioxidant activities of some tryptophan metabolites: possible implication for inflammatory diseases. Proc Natl Acad Sci U S A. 1990;87:2506–10. https://doi.org/10.1073/pnas.87.7.2506.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Maddison DC, Giorgini F. The kynurenine pathway and neurodegenerative disease. Semin Cell Dev Biol. 2015;40:134–41. https://doi.org/10.1016/j.semcdb.2015.03.002.

Article  CAS  PubMed  Google Scholar 

Gargaro M, Scalisi G, Manni G, Briseño CG, Bagadia P, Durai V, et al. Indoleamine 2,3-dioxygenase 1 activation in mature cDC1 promotes tolerogenic education of inflammatory cDC2 via metabolic communication. Immunity. 2022;55:1032–50.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Koper JE, Troise AD, Loonen LM, Vitaglione P, Capuano E, Fogliano V, et al. Tryptophan supplementation increases the production of microbial-derived AhR agonists in an in vitro simulator of intestinal microbial ecosystem. J Agric Food Chem. 2022;70:3958–68. https://doi.org/10.1021/acs.jafc.1c04145.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liang X, Su T, Wu P, Dai Y, Chen Y, Wang Q, et al. Identification of paeoniflorin from Paeonia lactiflora pall. As an inhibitor of tryptophan 2,3-dioxygenase and assessment of its pharmacological effects on depressive mice. J Ethnopharmacol. 2023;317: 116714. https://doi.org/10.1016/j.jep.2023.116714.

Article  CAS  PubMed  Google Scholar 

Raghavan R, Anand NS, Wang G, Hong X, Pearson C, Zuckerman B, et al. Association between cord blood metabolites in tryptophan pathway and childhood risk of autism spectrum disorder and attention-deficit hyperactivity disorder. Transl Psychiatry. 2022;12:270. https://doi.org/10.1038/s41398-022-01992-0.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sutanto CN, Loh WW, Kim JE. The impact of tryptophan supplementation on sleep quality: a systematic review, meta-analysis, and meta-regression. Nutr Rev. 2022;80:306–16. https://doi.org/10.1093/nutrit/nuab027.

Article  PubMed  Google Scholar 

Kennaway DJ. The mammalian gastro-intestinal tract is a NOT a major extra-pineal source of melatonin. J Pineal Res. 2023;75:e12906. https://doi.org/10.1111/jpi.12906.

Article  CAS  PubMed  Google Scholar 

Liaqat H, Parveen A, Kim SY. Neuroprotective natural products’ regulatory effects on depression via gut-brain axis targeting tryptophan. Nutrients. 2022;14:14. https://doi.org/10.3390/nu14163270.

Article  CAS  Google Scholar 

Zhu Y, Yin L, Liu Q, Guan Y, Nie S, Zhu Y, et al. Tryptophan metabolic pathway plays a key role in the stress-induced emotional eating. Curr Res Food Sci. 2024;8: 100754. https://doi.org/10.1016/j.crfs.2024.100754.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stone TW, Williams RO. Modulation of T cells by tryptophan metabolites in the kynurenine pathway. Trends Pharmacol Sci. 2023;44:442–56. https://doi.org/10.1016/j.tips.2023.04.006.

Article  CAS  PubMed  Google Scholar 

Gargaro M, Manni G, Scalisi G, Puccetti P, Fallarino F. Tryptophan metabolites at the crossroad of immune-cell interaction via the Aryl hydrocarbon receptor: implications for tumor immunotherapy. Int J Mol Sci. 2021;22:22. https://doi.org/10.3390/ijms22094644.

Article  CAS  Google Scholar 

Günther J, Fallarino F, Fuchs D, Wirthgen E, Editorial. Immunomodulatory roles of tryptophan metabolites in inflammation and cancer. Front Immunol. 2020;11: 1497. https://doi.org/10.3389/fimmu.2020.01497.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pathak S, Nadar R, Kim S, Liu K, Govindarajulu M, Cook P, et al. The influence of kynurenine metabolites on neurodegenerative pathologies. Int J Mol Sci. 2024;25:25. https://doi.org/10.3390/ijms25020853.

Article  CAS 

留言 (0)

沒有登入
gif