Advancing against drug-resistant tuberculosis: an extensive review, novel strategies and patent landscape

Adane AA, Alene KA, Koye DN, Zeleke BM (2013) Non-adherence to anti-tuberculosis treatment and determinant factors among patients with tuberculosis in Northwest Ethiopia. PLoS One 8:1–6. https://doi.org/10.1371/JOURNAL.PONE.0078791

Article  Google Scholar 

Aggarwal A, Mehta S, Gupta D et al (2012) Clinical & immunological erythematosus patients characteristics in systemic lupus Maryam. J Dent Educ 76:1532–1539. https://doi.org/10.4103/ijmr.IJMR

Article  PubMed  Google Scholar 

Ahmad Khan F, Fox G, Menzies D (2017) Drug-resistant tuberculosis BT - Handbook of Antimicrobial Resistance. In: Berghuis A, Matlashewski G, Wainberg MA et al (eds) Springer. New York, NY, New York, pp 263–286

Google Scholar 

Ahmed S, Nandi S, Saxena AK (2022) An updated patent review on drugs for the treatment of tuberculosis (2018-present). Expert Opin Ther Pat 32:243–260. https://doi.org/10.1080/13543776.2022.2012151

Article  PubMed  CAS  Google Scholar 

Alejandra Isabel J-G, Miroslava F-P, Rafael L-L (2019) Second-line injectable drugs for the treatment of multidrug-resistant tuberculosis. Why do we keep using them? Rev Am Med Respir 19:175–178

Google Scholar 

Alejandra Isabel J-G, Miroslava F-P, Rafael L-L (2019) Second-line injectable drugs for the treatment of multidrug-resistant tuberculosis. Why do we keep using them? Rev Am Med Respir 3:175–178

Google Scholar 

Alemu A, Bitew ZW, Diriba G et al (2023) Incidence and predictors of acquired resistance to second-line antituberculosis drugs during the course of multi-drug resistant tuberculosis treatment: protocol for a systematic review and meta-analysis. BMJ Open 13:e070143. https://doi.org/10.1136/bmjopen-2022-070143

Article  PubMed  PubMed Central  Google Scholar 

Ali MZ, Dutt TS, MacNeill A et al (2024) A modified BPaL regimen for tuberculosis treatment replaces linezolid with inhaled spectinamides. bioRxiv. https://doi.org/10.1101/2023.11.16.567434

Article  PubMed  PubMed Central  Google Scholar 

Alliance Global (2008) Handbook of Anti Tuberculosis Agents, New York, NY. Global Alliance for TB Drug Development 88(2):85–170

Allue-Guardia A, García JI, Torrelles JB (2021) Evolution of drug-resistant mycobacterium tuberculosis strains and their adaptation to the human lung environment. Front Microbiol 12:1–21. https://doi.org/10.3389/FMICB.2021.612675/BIBTEX

Article  Google Scholar 

Alzahabi KH, Usmani O, Georgiou TK et al (2020) Approaches to treating tuberculosis by encapsulating metal ions and anti-mycobacterial drugs utilizing nano- and microparticle technologies. Emerg Top Life Sci 4:581–600. https://doi.org/10.1042/ETLS20190154

Article  PubMed  PubMed Central  CAS  Google Scholar 

American Diabetes Association Professional Practice Committee (2021) Comprehensive medical evaluation and assessment of comorbidities: standards of medical care in diabetes—2022. In: Diabetes Care. American Diabetes Association Professional Practice Committee, pp 46–59

Aubry A, Veziris N, Cambau E et al (2006) Novel gyrase mutations in quinolone-resistant and -hypersusceptible clinical isolates of mycobacterium tuberculosis: functional analysis of mutant enzymes. Antimicrob Agents Chemother 50:104–112. https://doi.org/10.1128/AAC.50.1.104-112.2006

Article  PubMed  PubMed Central  CAS  Google Scholar 

Aung KJM, Van Deun A, Declercq E et al (2014) Successful “9-month Bangladesh regimen” for multidrug-resistant tuberculosis among over 500 consecutive patients. Int J Tuberc lung Dis 18:1180–1187. https://doi.org/10.5588/IJTLD.14.0100

Article  PubMed  CAS  Google Scholar 

Ayukekbong JA, Ntemgwa M, Atabe AN (2017) The threat of antimicrobial resistance in developing countries: Causes and control strategies. Antimicrob Resist Infect Control 6:1–8. https://doi.org/10.1186/S13756-017-0208-X/TABLES/2

Article  Google Scholar 

Bakhtiyariniya P, Khosravi AD, Hashemzadeh M, Savari M (2022) Detection and characterization of mutations in genes related to isoniazid resistance in Mycobacterium tuberculosis clinical isolates from Iran. Mol Biol Rep 49:6135–6143. https://doi.org/10.1007/S11033-022-07404-2/TABLES/4

Article  PubMed  PubMed Central  CAS  Google Scholar 

Bakuba Z, Napiórkowska A, Bielecki J et al (2013) Mutations in the embB gene and their association with ethambutol resistance in multidrug-resistant mycobacterium tuberculosis clinical isolates from Poland. Biomed Res Int 2013:1–5. https://doi.org/10.1155/2013/167954

Article  Google Scholar 

Baranyai Z, Soria-Carrera H, Alleva M et al (2021) Nanotechnology-based targeted drug delivery: an emerging tool to overcome tuberculosis. Adv Ther 4:1–22. https://doi.org/10.1002/ADTP.202000113

Article  Google Scholar 

Beviere M, Reissier S, Penven M et al (2023) The role of next-generation sequencing (NGS) in the management of tuberculosis: practical review for implementation in routine. Pathogens 12:978. https://doi.org/10.3390/PATHOGENS12080978

Article  PubMed  PubMed Central  CAS  Google Scholar 

Bollela VR, Namburete EI, Feliciano CS et al (2017) Detection of katG and inhA mutations to guide isoniazid and ethionamide use for drug-resistant tuberculosis. Int J Tuberc Lung Dis 20:1099–1104. https://doi.org/10.5588/ijtld.15.0864

Article  Google Scholar 

Borah Slater K, Kim D, Chand P et al (2023) A current perspective on the potential of nanomedicine for anti-tuberculosis therapy. Trop Med Infect Dis 8:100–112. https://doi.org/10.3390/TROPICALMED8020100

Article  PubMed  PubMed Central  Google Scholar 

Bourguignon T, Godinez-Leon JA, Gref R (2023) Nanosized drug delivery systems to fight tuberculosis. Pharmaceutics 15:1–42. https://doi.org/10.3390/pharmaceutics15020393

Article  CAS  Google Scholar 

Brossier F, Pham A, Bernard C et al (2017) Molecular investigation of resistance to second-line injectable drugs in multidrug-resistant clinical isolates of Mycobacterium tuberculosis in France. Antimicrob Agents Chemother 61:1–9. https://doi.org/10.1128/AAC.01299-16

Article  Google Scholar 

Bu Q, Qiang R, Fang L et al (2023) Global trends in the incidence rates of MDR and XDR tuberculosis: findings from the global burden of disease study 2019. Front Pharmacol 14:1–9. https://doi.org/10.3389/fphar.2023.1156249

Article  Google Scholar 

Calligaro GL, Moodley L, Symons G, Dheda K (2014) The medical and surgical treatment of drug-resistant tuberculosis. J Thorac Dis 6:186–195. https://doi.org/10.3978/J.ISSN.2072-1439.2013.11.11

Article  PubMed  PubMed Central  Google Scholar 

Campbell PJ, Morlock GP, Sikes RD et al (2011) Molecular detection of mutations associated with first- and second-line drug resistance compared with conventional drug susceptibility testing of Mycobacterium tuberculosis. Antimicrob Agents Chemother 55:2032–2041. https://doi.org/10.1128/AAC.01550-10

Article  PubMed  PubMed Central  CAS  Google Scholar 

CDC (2016a) Fact sheets | drug-resistant TB | extensively drug-resistant tuberculosis (XDR TB) | TB | CDC. In: Cent. Dis. Control Prev. https://www.cdc.gov/tb/publications/factsheets/drtb/xdrtb.htm. Accessed 5 Jun 2023

CDC (2016b) Fact sheets | drug-resistant tb | extensively drug-resistant tuberculosis (XDR TB) | TB | CDC. In: Cent. Dis. Control Prev. https://www.cdc.gov/tb/publications/factsheets/drtb/xdrtb.htm. Accessed 26 May 2023

CDC (2016c) TB diagnostic tool: Xpert MTB/RIF assay fact sheet | TB | CDC. In: Cell. Mol. Neurobiol. https://www.cdc.gov/tb/publications/factsheets/testing/xpert_mtb-rif.htm. Accessed 22 Mar 2024

CDC (2016d) General Considerations for treatment of TB fact sheet | TB | CDC. https://www.cdc.gov/tb/publications/factsheets/treatment/treatmenthivnegative.htm#:~:text=Regimens for treating TB disease,after 2 months of treatment. Accessed 7 Jun 2023

CDC (2021) Diagnosis of tuberculosis disease. in: core curriculum on tuberculosis: what the clinician should know. Centers for Disease Control and Prevention, pp 75–107

CDC (2022) Drug-resistant TB | TB |CDC. In: Centers Dis. Control Prev. https://www.cdc.gov/tb/topic/drtb/default.htm. Accessed 7 Jun 2023

CDC (2023) About drug-resistant tuberculosis disease | tuberculosis (TB) | CDC. https://www.cdc.gov/tb/about/drug-resistant.html. Accessed 7 Aug 2024

CDC (2024a) Clinical overview of drug-resistant tuberculosis disease | tuberculosis (TB) | CDC. https://www.cdc.gov/tb/hcp/clinical-overview/drug-resistant-tuberculosis-disease.html. Accessed 7 Aug 2024

CDC (2024b) Bedaquiline, pretomanid, and linezolid (BPaL) | TB |CDC. In: Cent. Dis. Control Prev. https://www.cdc.gov/tb/topic/drtb/bpal/default.htm. Accessed 22 Mar 2024

Chiang CY, Centis R, Migliori GB (2010) Drug-resistant tuberculosis: past, present, future. Respirology 15:413–432. https://doi.org/10.1111/J.1440-1843.2010.01738.X

Article  PubMed  Google Scholar 

Chopra H, Mohanta YK, Rauta PR et al (2023) An insight into advances in developing nanotechnology based therapeutics, drug delivery, diagnostics and vaccines: multidimensional applications in tuberculosis disease management. Pharmaceuticals 16:581–617. https://doi.org/10.3390/PH16040581

Article  PubMed  PubMed Central  CAS  Google Scholar 

Chung-Delgado K, Guillen-Bravo S, Revilla-Montag A, Bernabe-Ortiz A (2015) Mortality among MDR-TB cases: comparison with drug-susceptible tuberculosis and associated factors. PLoS One 10:1–10. https://doi.org/10.1371/journal.pone.0119332

Article  CAS  Google Scholar 

Conkle-Gutierrez D, Kim C, Ramirez-Busby SM et al (2022) Distribution of common and rare genetic markers of second-line-injectable-drug resistance in Mycobacterium tuberculosis revealed by a genome-wide association study. Antimicrob Agents Chemother 66:1–12. https://doi.org/10.1128/AAC.02075-21

Article  Google Scholar 

Cuevas-Córdoba B, Cuellar-Sánchez A, Pasissi-Crivelli A et al (2013) rrs and rpsL mutations in streptomycin-resistant isolates of Mycobacterium tuberculosis from Mexico. J Microbiol Immunol Infect 46:30–34. https://doi.org/10.1016/J.JMII.2012.08.020

Article  PubMed 

留言 (0)

沒有登入
gif