Protective effect of aspirin and gentisic acid, a plant-derived phenolic acid, on acrylamide-induced neurotoxicity by inhibiting apoptosis and autophagy

Abedi F, Razavi BM, Hosseinzadeh H (2020) A review on gentisic acid as a plant derived phenolic acid and metabolite of aspirin: comprehensive pharmacology, toxicology, and some pharmaceutical aspects. Phytother Res 34:729–741

Article  CAS  PubMed  Google Scholar 

Ahrari Roodi P, Moosavi Z, Afkhami Goli A, Azizzadeh M, Hosseinzadeh H (2018) Histopathological study of protective effects of honey on subacute toxicity of acrylamide-induced tissue lesions in rats’ brain and liver. Iran J Toxicol 12:1–8

Article  Google Scholar 

Aldawood N, Alrezaki A, Alanazi S, Amor N, Alwasel S, Sirotkin A, Harrath AH (2020) Acrylamide impairs ovarian function by promoting apoptosis and affecting reproductive hormone release, steroidogenesis and autophagy-related genes: an in vivo study. Ecotoxicol Environ Saf 197:110595

Article  CAS  PubMed  Google Scholar 

al-Swayeh OA, Clifford RH, del Soldato P, Moore PK (2000) A comparison of the anti-inflammatory and anti-nociceptive activity of nitroaspirin and aspirin. Br J Pharmacol 129:343–350

Article  CAS  PubMed Central  PubMed  Google Scholar 

Bansal S, Dhingra D (2022) Pharmacological screening of gentisic acid for antidepressant activity in unstressed and stressed mice. Int J Pharm Investig 12:216–222

Article  CAS  Google Scholar 

Crisanti P, Leon A, Lim DM, Omri B (2005) Aspirin prevention of NMDA-induced neuronal death by direct protein kinase Czeta inhibition. J Neurochem 93:1587–1593

Article  CAS  PubMed  Google Scholar 

Exner M, Hermann M, Hofbauer R, Kapiotis S, Speiser W, Held I, Seelos C, Gmeiner BM (2000) The salicylate metabolite gentisic acid, but not the parent drug, inhibits glucose autoxidation-mediated atherogenic modification of low density lipoprotein. FEBS Lett 470:47–50

Article  CAS  PubMed  Google Scholar 

Fazeli Kakhki H, Ghasemzadeh Rahbardar M, Razavi BM, Heidari MR, Hosseinzadeh H (2024) Preventive and therapeutic effects of azithromycin on acrylamide-induced neurotoxicity in rats. Neurotoxicology 100:47–54

Article  CAS  PubMed  Google Scholar 

Feng X, Lu B, Xu Y, Li Q, Zhou W, Yang Z, Yang Z, Zhao W, Shen Z, Hu R (2011) Aspirin reduces the apoptotic effect of etoposide via Akt activation and up-regulation of p21(cip). Int J Mol Med 28:637–643

CAS  PubMed  Google Scholar 

Gałecki P, Szemraj J, Bieńkiewicz M, Zboralski K, Gałecka E (2009) Oxidative stress parameters after combined fluoxetine and acetylsalicylic acid therapy in depressive patients. Hum Psychopharmacol 24:277–286

Article  PubMed  Google Scholar 

Ghasemzadeh Rahbardar M, Cheraghi Farmad H, Hosseinzadeh H, Mehri S (2021) Protective effects of selenium on acrylamide-induced neurotoxicity and hepatotoxicity in rats. Iran J Basic Med Sci 24:1041–1049

PubMed Central  PubMed  Google Scholar 

Ghasemzadeh Rahbardar M, Hemadeh B, Razavi BM, Eisvand F, Hosseinzadeh H (2022) Effect of carnosic acid on acrylamide induced neurotoxicity: in vivo and in vitro experiments. Drug Chem Toxicol 45:1528–1535

Article  CAS  PubMed  Google Scholar 

Ghobakhlou F, Eisvand F, Razavi BM, Ghasemzadeh Rahbardar M, Hosseinzadeh H (2023) Evaluating the effect of alpha-mangostin on neural toxicity induced by acrylamide in rats. Environ Sci Pollut Res Int 30:95789–95800

Article  CAS  PubMed  Google Scholar 

Maharaj DS, Saravanan KS, Maharaj H, Mohanakumar KP, Daya S (2004) Acetaminophen and aspirin inhibit superoxide anion generation and lipid peroxidation, and protect against 1-methyl-4-phenyl pyridinium-induced dopaminergic neurotoxicity in rats. Neurochem Int 44:355–360

Article  CAS  PubMed  Google Scholar 

Gur C, Kandemir FM, Darendelioglu E, Caglayan C, Kucukler S, Kandemir O, Ileriturk M (2021) Morin protects against acrylamide-induced neurotoxicity in rats: an investigation into different signal pathways. Environ Sci Pollut Res Int 28:49808–49819

Article  CAS  PubMed  Google Scholar 

Hermann M, Kapiotis S, Hofbauer R, Exner M, Seelos C, Held I, Gmeiner B (1999) Salicylate inhibits LDL oxidation initiated by superoxide/nitric oxide radicals. FEBS Lett 445:212–214

Article  CAS  PubMed  Google Scholar 

Hogervorst JG, Baars BJ, Schouten LJ, Konings EJ, Goldbohm RA, van den Brandt PA (2010) The carcinogenicity of dietary acrylamide intake: a comparative discussion of epidemiological and experimental animal research. Crit Rev Toxicol 40:485–512

Article  CAS  PubMed  Google Scholar 

Huang SN, Ruan HZ, Chen MY, Zhou G, Qian ZM (2018) Aspirin increases ferroportin 1 expression by inhibiting hepcidin via the JAK/STAT3 pathway in interleukin 6-treated PC-12 cells. Neurosci Lett 662:1–5

Article  CAS  PubMed  Google Scholar 

Kabra MP, Bhandari SS, Sharma A, Gupta RB (2014) Evaluation of anti-parkinson’s activity of gentisic acid in different animal models. J Acute Dis 3:141–144

Article  Google Scholar 

Karimi M, Ghasemzadeh Rahbardar M, Razavi BM, Hosseinzadeh H (2023) Amifostine inhibits acrylamide-induced hepatotoxicity by inhibiting oxidative stress and apoptosis. Iran J Basic Med Sci 26:662–668

PubMed Central  PubMed  Google Scholar 

Kim M, Kim J, Shin YK, Kim KY (2020) Gentisic acid stimulates keratinocyte proliferation through ERK1/2 phosphorylation. Int J Med Sci 17:626–631

Article  CAS  PubMed Central  PubMed  Google Scholar 

Kopanska M, Muchacka R, Czech J, Batoryna M, Formicki G (2018) Acrylamide toxicity and cholinergic nervous system. J Physiol Pharmacol 69. https://doi.org/10.26402/jpp.2018.6.03

Krishnan M, Kang SC (2019) Vitexin inhibits acrylamide-induced neuroinflammation and improves behavioral changes in zebrafish larvae. Neurotoxicol Teratol 74:106811

Article  CAS  PubMed  Google Scholar 

Kumar J, Das S, Teoh SL (2018) Dietary acrylamide and the risks of developing cancer: facts to ponder. Front Nutr 5:14

Article  PubMed Central  PubMed  Google Scholar 

Kumar A, Sidhu J, Goyal A, Tsao JW, Doerr C (2021) Alzheimer disease (nursing). StatPearls. StatPearls Publishing, Treasure Island

Google Scholar 

Lai SM, Gu ZT, Zhao MM, Li XX, Ma YX, Luo L, Liu J (2017) Toxic effect of acrylamide on the development of hippocampal neurons of weaning rats. Neural Regen Res 12:1648–1654

Article  CAS  PubMed Central  PubMed  Google Scholar 

Li SX, Cui N, Zhang CL, Zhao XL, Yu SF, Xie KQ (2006) Effect of subchronic exposure to acrylamide induced on the expression of bcl-2, bax and caspase-3 in the rat nervous system. Toxicology 217:46–53

Article  CAS  PubMed  Google Scholar 

Liu PP, Liu HH, Sun SH, Shi XX, Yang WC, Su GH, Zhao J (2017) Aspirin alleviates cardiac fibrosis in mice by inhibiting autophagy. Acta Pharmacol Sin 38:488–497

Article  CAS  PubMed Central  PubMed  Google Scholar 

LoPachin RM, Gavin T (2012) Molecular mechanism of acrylamide neurotoxicity: lessons learned from organic chemistry. Environ Health Perspect 120:1650–1657

Article  CAS  PubMed Central  PubMed  Google Scholar 

Ma Y, Shi J, Zheng M, Liu J, Tian S, He X, Zhang D, Li G, Zhu J (2011) Toxicological effects of acrylamide on the reproductive system of weaning male rats. Toxicol Ind Health 27:617–627

Article  CAS  PubMed  Google Scholar 

McIlwain DR, Berger T, Mak TW (2013) Caspase functions in cell death and disease. Cold Spring Harb Perspect Biol 5:a008656

Article  PubMed Central  PubMed  Google Scholar 

Mehri S, Abnous K, Mousavi SH, Shariaty VM, Hosseinzadeh H (2012) Neuroprotective effect of crocin on acrylamide-induced cytotoxicity in PC12 cells. Cell Mol Neurobiol 32:227–235

Article  CAS  PubMed  Google Scholar 

Mehri S, Shahi M, Razavi BM, Hassani FV, Hosseinzadeh H (2014) Neuroprotective effect of thymoquinone in acrylamide-induced neurotoxicity in Wistar rats. Iran J Basic Med Sci 17:1007–1011

留言 (0)

沒有登入
gif