High-affinity antibodies specific to the core region of the tau protein exhibit diagnostic and therapeutic potential for Alzheimer’s disease

Al-Hilaly YK, Pollack SJ, Rickard JE, Simpson M, Raulin A-C, Baddeley T, et al. Cysteine-independent inhibition of Alzheimer’s disease-like paired helical filament assembly by leuco-methylthioninium (LMT). J Mol Biol. 2018;430(21):4119–31.

Al-Hilaly YK, Pollack SJ, Vadukul DM, Citossi F, Rickard JE, Simpson M, et al. Alzheimer’s disease-like paired helical filament assembly from truncated tau protein is independent of disulfide crosslinking. J Mol Biol. 2017;429(23):3650–65.

Apetri A, Crespo R, Juraszek J, Pascual P, Janson R, Zhu X, et al. A common antigenic motif recognized by naturally occurring human VH5–51/VL4–1 anti-tau antibodies with distinct functionalities. Acta Neuropathol Commun. 2018;6(1):1–17.

Arastoo M, Lofthouse R, Penny LK, Harrington CR, Porter A, Wischik CM, et al. Current progress and future directions for tau-based fluid biomarker diagnostics in Alzheimer’s disease. Int J Mol Sci. 2020;21(22):8673.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barthélemy NR, Bateman RJ, Hirtz C, Marin P, Becher F, Sato C, et al. Cerebrospinal fluid phospho-tau T217 outperforms T181 as a biomarker for the differential diagnosis of Alzheimer’s disease and PET amyloid-positive patient identification. Alzheimers Res Ther. 2020;12(1):26.

Article  Google Scholar 

Braak H, Braak E. Evolution of the neuropathology of Alzheimer’s disease. Acta Neurol Scand. 1996;94(S165):3–12.

Article  Google Scholar 

Bugiani O, Murrell JR, Giaccone G , Hasegawa M, Ghigo G, Tabaton M, et al. Frontotemporal dementia and corticobasal degeneration in a family with a P301S mutation in tau. J Neuropathol Exp Neurol. 1999;58(6):667–77.

Article  CAS  PubMed  Google Scholar 

Caceres A, Potrebic S, Kosik KS. The effect of tau antisense oligonucleotides on neurite formation of cultured cerebellar macroneurons. J Neurosci. 1991;11(6):1515–23.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chames P, Van Regenmortel M, Weiss E, Baty D. Therapeutic antibodies: successes, limitations and hopes for the future. Br J Pharmacol. 2009;157(2):220–33.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Charlton KA, Moyle S, Porter AJ, Harris WJ. Analysis of the diversity of a sheep antibody repertoire as revealed from a bacteriophage display library. J Immunol. 2000;164(12):6221–9.

Article  CAS  PubMed  Google Scholar 

Colom-Cadena M, Davies C, Sirisi S, Lee J-E, Simzer EM, Tzioras M, Querol-Vilaseca M, et al. Synaptic oligomeric tau in Alzheimer’s disease—A potential culprit in the spread of tau pathology through the brain. Neuron. 2023;111(14):2170–83.

Article  CAS  PubMed  Google Scholar 

Courade J, Angers R, Mairet-Coello G, Pacico N, Tyson K, Lightwood D, et al. Epitope determines efficacy of therapeutic anti-tau antibodies in a functional assay with human Alzheimer tau. Acta Neuropathol. 2018;136:729–45.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cummings J, Zhou Y, Lee G, Zhong K, Fonseca, J. Cheng F. Alzheimer’s disease drug development pipeline. Alzheimer’s Dementia. Translational Res Clin Interventions. 2023;10(2):e12465.

Google Scholar 

Dam T, Boxer AL, Golbe LI, Höglinger GU, Morris HR, Litvan I et al. Safety and efficacy of anti-tau monoclonal antibody gosuranemab in progressive supranuclear palsy: a phase 2, randomized, placebo-controlled trial. Nat Med. 2021;27(8):1451–7.

Article  CAS  PubMed  Google Scholar 

deVos SL, Corjuc BT, Oakley DH, Nobuhara CK, Bannon RN, Chase A, et al. Synaptic tau seeding precedes tau pathology in human Alzheimer’s disease brain. Front Neurosci. 2018;12:267.

Article  PubMed  PubMed Central  Google Scholar 

Dixit R, Ross JL, Goldman YE, Holzbauer LF. Differential regulation of dynein and kinesin motor proteins by tau. Science. 2008;319(5866):1086–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dujardin S, Bégard S, Caillierez R, Lachaud C, Carrier S, Lieger S, et al. Different tau species lead to heterogeneous tau pathology propagation and misfolding. Acta Neuropathol Commun. 2020;6(1):132.

Article  Google Scholar 

Falcon B, Zhang W, Schweighauser M, Murzin AG, Vidal R, Garringer HJ, Ghetti B, Scheres SHW, Goedert M. Tau filaments from multiple cases of sporadic and inherited Alzheimer's disease adopt a common fold. Acta Neuropathol. 2018;136(5):699–708. https://doi.org/10.1007/s00401-018-1914-z

Feinstein SC, Wilson L. Inability of tau to properly regulate neuronal microtubule dynamics: a loss-of-function mechanism by which tau might mediate neuronal cell death. Biochim Biophys Acta (BBA)-Molecular Basis Disease. 2005;1739(2–3):268–79.

Article  CAS  Google Scholar 

Fitzpatrick AWP, Falcon B, He S, Murzin AG, Murshudov G, Garringer HJ, et al. Cryo-EM structures of tau filaments from Alzheimer’s disease. Nature. 2017;547(7662):185–90.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Frost B, Jacks RL, Diamond MI. Propagation of tau misfolding from the outside to the inside of a cell. J Biol Chem. 2009;284(19):12845–52.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Furman Jl, Vaquer-Alicea J, White CL, Cairns NJ, Nelson PT, Diamond MI. Widespread tau seeding activity at early Braak stages. Acta Neuropathol. 2017;133:91–100.

Article  CAS  PubMed  Google Scholar 

Ghag G, Bhatt N, Cantu DV, Guerrero-Munoz MJ, Ellsworth A, Sengupta U, Kayed R. Soluble tau aggregates, not large fibrils, are the toxic species that display seeding and cross‐seeding behavior. Protein Sci. 2018;27(11):1901–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hayhurst A, Harris WJ. Escherichia coli Skp chaperone coexpression improves solubility and phage display of single-chain antibody fragments. Protein Exp Purif. 1999;15(3):336–43.

Article  CAS  Google Scholar 

Holmes BB, Furman JL, Mahan TE, Yamasaki TR, Mirbaha H, Eades WC, et al. Diamond MI. Proteopathic tau seeding predicts tauopathy in vivo. Proc Natl Acad Sci, USA 2014; 111(41), pp. E4376-E4385.

Hromadkova L, Kim C, Haldiman T, Peng L, Zhu X, Cohen M, et al. Evolving prion-like tau conformers differentially alter postsynaptic proteins in neurons inoculated with distinct isolates of Alzheimer’s disease tau. Cell Biosci. 2023;13(1):174.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Janelidze S, Mattsson N, Palmqvist S, Smith, R, Beach TG, Serrano GE, et al. Plasma P-tau181 in Alzheimer’s disease: relationship to other biomarkers, differential diagnosis, neuropathology and longitudinal progression to Alzheimer’s dementia. Nat Med. 2020;26(3):379–86.

Article  CAS  PubMed  Google Scholar 

Jeganathan S, von Bergen M, Brutlach H, Steinhoff, H. and, Mandelkow E. Global hairpin folding of tau in solution. Biochemistry. 2006;45(7):2283–93.

Article  CAS  PubMed  Google Scholar 

Jeganathan S, von Bergen M, Mandelkow E-M, Mandelkow E. The natively unfolded character of tau and its aggregation to Alzheimer-like paired helical filaments. Biochemistry. 2008;47(40):10526–39.

Article  CAS  PubMed  Google Scholar 

Kim C, Haldiman T, Kang S, Hromadkova L, Han ZZ, Chen W, et al. Distinct populations of highly potent TAU seed conformers in rapidly progressing Alzheimer’s disease. Sci Transl Med. 2022;14(626):eabg0253.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lai RYK, Harrington CR, WIschik CM. Absence of a role for phosphorylation in the tau pathology of Alzheimer’s disease. Biomolecules. 2016;6(2):19.

Article  PubMed  PubMed Central  Google Scholar 

Lasagna-Reeves CA, Castillo-Carranza DL, Guerrero-Munoz MJ, Jackson GR, Kayed R. Preparation and characterization of neurotoxic tau oligomers. Biochemistry. 2010;49(47):10039–41.

Article  CAS  PubMed  Google Scholar 

Lövestam S, Koh FA, Van Knippenberg B, Kotecha A, Murzin AG, Goedert M, Scheres SHW. Assembly of recombinant tau into filaments identical to those of Alzheimer’s disease and chronic traumatic encephalopathy. eLife. 2022;11:e76494.

Article  PubMed  PubMed Central  Google Scholar 

Mazanetz MP, Marshall KE, Al-Hilaly YK, Horsley D, Santos RX, et al. Mechanism of core-tau unit assembly and inhibition in Alzheimer’s disease. 2024.

Melis V, Zabke C, Stamer K, Magbagbeolu M, Schwab K, Marschall P, et al. Different pathways of molecular pathophysiology underlie cognitive and motor tauopathy phenotypes in transgenic models for Alzheimer’s disease and frontotemporal lobar degeneration. Cell Mol Life Sci. 2015;72:2199–222.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif