Emerging technologies in regenerative medicine: The future of wound care and therapy

Ongarora BG (2022) Recent technological advances in the management of chronic wounds: a literature review. Health Sci Rep 5. https://doi.org/10.1002/hsr2.641

Järbrink K, Ni G, Sönnergren H, et al (2016) Prevalence and incidence of chronic wounds and related complications: a protocol for a systematic review. Syst Rev 5. https://doi.org/10.1186/s13643-016-0329-y

Sen CK (2019) Human wounds and its burden: an updated compendium of estimates. Adv Wound Care (New Rochelle) 8:39

Article  PubMed  Google Scholar 

Garraud O, Hozzein WN, Badr G (2017) Wound healing: time to look for intelligent, “natural” immunological approaches? BMC Immunol 18

Spampinato SF, Caruso GI, De Pasquale R et al (2020) The treatment of impaired wound healing in diabetes: looking among old drugs. Pharmaceuticals 13. https://doi.org/10.3390/ph13040060

Mathew-Steiner SS, Roy S, Sen CK (2021) Collagen in wound healing. Bioengineering 8:63

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rodrigues M, Kosaric N, Bonham CA, Gurtner GC (2019) Wound healing: a cellular perspective. Physiol Rev 99. https://doi.org/10.1152/physrev.00067.2017

Wang J (2018) Neutrophils in tissue injury and repair. Cell Tissue Res 371:531

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim SY, Nair MG (2019) Macrophages in wound healing: activation and plasticity. Immunol Cell Biol 97:258

Article  PubMed  PubMed Central  Google Scholar 

Krzyszczyk P, Schloss R, Palmer A, Berthiaume F (2018) The role of macrophages in acute and chronic wound healing and interventions to promote pro-wound healing phenotypes. Front Physiol 9. https://doi.org/10.3389/fphys.2018.00419

Corliss BA, Azimi MS, Munson JM et al (2016) Macrophages: an inflammatory link between angiogenesis and lymphangiogenesis. Microcirculation 23. https://doi.org/10.1111/micc.12259

Ueshima E, Fujimori M, Kodama H et al (2019) Macrophage-secreted TGF-β1 contributes to fibroblast activation and ureteral stricture after ablation injury. Am J Physiol Renal Physiol 317. https://doi.org/10.1152/ajprenal.00260.2018

Sharifiaghdam M, Shaabani E, Faridi-Majidi R et al (2022) Macrophages as a therapeutic target to promote diabetic wound healing. Molecular Therapy 30:2891

Article  CAS  PubMed  PubMed Central  Google Scholar 

D’Urso M, Kurniawan NA (2020) Mechanical and physical regulation of fibroblast–myofibroblast transition: from cellular mechanoresponse to tissue pathology. Front Bioeng Biotechnol 8. https://doi.org/10.3389/fbioe.2020.609653

Monika P, Chandraprabha MN, Rangarajan A, et al (2022) Challenges in healing wound: role of complementary and alternative medicine. Front Nutr 8. https://doi.org/10.3389/fnut.2021.791899

Frykberg RG, Banks J (2015) Challenges in the treatment of chronic wounds. Adv Wound Care (New Rochelle) 4:. https://doi.org/10.1089/wound.2015.0635

Nagle SM, Stevens KA, Wilbraham SC (2023) Wound Assessment. In: StatPearls [Internet]. StatPearls Publishing, Treasure Island, 2024

Oliver TI, Mutluoglu M (2023) Diabetic foot ulcer. StatPearls. https://europepmc.org/books/n/statpearls/article-34555/?extid=30137802&src=med

Seidel D, Diedrich S, Herrle F et al (2020) Negative pressure wound therapy vs conventional wound treatment in subcutaneous abdominal wound healing impairment: the sawhi randomized clinical trial. JAMA Surg 155. https://doi.org/10.1001/jamasurg.2020.0414

Rowan MP, Cancio LC, Elster EA, et al (2015) Burn wound healing and treatment: review and advancements. Crit Care 19. https://doi.org/10.1186/s13054-015-0961-2

Carolina E, Kato T, Khanh VC et al (2019) Glucocorticoid impaired the wound healing ability of endothelial progenitor cells by reducing the expression of CXCR4 in the PGE2 pathway. Front Med (Lausanne) 5. https://doi.org/10.3389/fmed.2018.00276

Tamez-Pérez HE (2015) Steroid hyperglycemia: prevalence, early detection and therapeutic recommendations: a narrative review. World J Diabetes 6. https://doi.org/10.4239/wjd.v6.i8.1073

Yu JR, Navarro J, Coburn JC, et al (2019) Current and future perspectives on skin tissue engineering: key features of biomedical research, translational assessment, and clinical application. Adv Healthc Mater 8. https://doi.org/10.1002/adhm.201801471

Dixit S, Baganizi DR, Sahu R et al (2017) Immunological challenges associated with artificial skin grafts: available solutions and stem cells in future design of synthetic skin. J Biol Eng 11. https://doi.org/10.1186/s13036-017-0089-9

Mao AS, Mooney DJ (2015) Regenerative medicine: current therapies and future directions. Proc Natl Acad Sci U S A 112. https://doi.org/10.1073/pnas.1508520112

Dzobo K, Thomford NE, Senthebane DA et al (2018) Advances in regenerative medicine and tissue engineering: innovation and transformation of medicine. Stem Cells Int 2018. https://doi.org/10.1155/2018/2495848

Sampogna G, Guraya SY, Forgione A (2015) Regenerative medicine: historical roots and potential strategies in modern medicine. J Microsc Ultrastruct 3. https://doi.org/10.1016/j.jmau.2015.05.002

Goula A, Gkioka V, Michalopoulos E et al (2020) Advanced therapy medicinal products challenges and perspectives in regenerative medicine. J Clin Med Res 12:780

Article  PubMed  PubMed Central  Google Scholar 

Jain A, Bansal R (2015) Applications of regenerative medicine in organ transplantation. J Pharm Bioallied Sci 7:188

Article  CAS  PubMed  PubMed Central  Google Scholar 

Krzyszczyk P, Acevedo A, Davidoff EJ et al (2018) The growing role of precision and personalized medicine for cancer treatment. Technology (Singap World Sci) 06. https://doi.org/10.1142/s2339547818300020

Wang Y, Jang YY (2022) From cells to organs: the present and future of regenerative medicine. In: Advances in Experimental Medicine and Biology

Salzman R, Cook F, Hunt T et al (2018) Addressing the value of gene therapy and enhancing patient access to transformative treatments. Molecular Therapy 26:2717

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nourian Dehkordi A, Mirahmadi Babaheydari F, Chehelgerdi M, Raeisi Dehkordi S (2019) Skin tissue engineering: wound healing based on stem-cell-based therapeutic strategies. Stem Cell Res Ther 10. https://doi.org/10.1186/s13287-019-1212-2

Bello YM, Falabella AF, Eaglstein WH (2001) Tissue-engineered skin: current status in wound healing. Am J Clin Dermatol 2:305

Article  CAS  PubMed  Google Scholar 

Spiekstra SW, Breetveld M, Rustemeyer T et al (2007) Wound-healing factors secreted by epidermal keratinocytes and dermal fibroblasts in skin substitutes. Wound Repair and Regeneration 15. https://doi.org/10.1111/j.1524-475X.2007.00280.x

Zakrzewski W, Dobrzyński M, Szymonowicz M, Rybak Z (2019) Stem cells: past, present, and future. Stem Cell Res Ther 10. https://doi.org/10.1186/s13287-019-1165-5

Panda B, Sharma Y, Gupta S, Mohanty S (2021) Mesenchymal stem cell-derived exosomes as an emerging paradigm for regenerative therapy and nano-medicine: a comprehensive review. Life 11:784

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sharma Y, Ray S, Mohanty S (2022) MSCs derived extracellular vesicles as a therapeutic paragon for neurodegenerative disorders: a viewpoint. Biocell 46. https://doi.org/10.32604/biocell.2022.018612

Shi Y, Inoue H, Wu JC, Yamanaka S (2017) Induced pluripotent stem cell technology: a decade of progress. Nat Rev Drug Discov 16:115

Article  CAS  PubMed  Google Scholar 

Doss MX, Sachinidis A (2019) Current challenges of iPSC-based disease modeling and therapeutic implications. Cells 8:403

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sharma Y, Gupta S, Mohanty S (2021) Mesenchymal stem cell-derived exosome as a nano weapon to target the COVID-19 pandemic. Biocell 45. https://doi.org/10.32604/BIOCELL.2021.014621

Pinky Gupta S, Krishnakumar V et al (2021) Mesenchymal stem cell derived exosomes: a nano platform for therapeutics and drug delivery in combating COVID-19. Stem Cell Rev Rep 17:33

Article  CAS  PubMed  Google Scholar 

Couto PS, Shatirishvili G, Bersenev A, Verter F (2019) First decade of clinical trials and published studies with mesenchymal stromal cells from umbilical cord tissue. Regenerative Med 14. https://doi.org/10.2217/rme-2018-0171

Bagno LL, Salerno AG, Balkan W, Hare JM (2022) Mechanism of action of mesenchymal stem cells (MSCs): impact of delivery method. Expert Opin Biol Ther 22. https://doi.org/10.1080/14712598.2022.2016695

Sahoo A, Damala M, Jaffet J, et al (2023) Expansion and characterization of human limbus-derived stromal/mesenchymal stem cells in xeno-free medium for therapeutic applications. Stem Cell Res Ther 14. https://doi.org/10.1186/s13287-023-03299-3

Sharma Y, Pranshu Rao E, Mohanty S (2022) An insight into the molecular mechanisms of mesenchymal stem cells and their translational approaches to combat COVID-19. In: Stem Cells and COVID-19

Wei L, Xu Y, Zhang L et al (2023) Mesenchymal stem cells promote wound healing and effects on expression of matrix metalloproteinases-8 and 9 in the wound tissue of diabetic rats. Stem Cells Dev 32. https://doi.org/10.1089/scd.2021.0218

Nilforoushzadeh MA, Raoofi A, Afzali H et al (2023) Promotion of cutaneous diabetic wound healing by subcutaneous administration of Wharton’s jelly mesenchymal stem cells derived from umbilical cord. Arch Dermatol Res 315. https://doi.org/10.1007/s00403-022-02326-2

Manso GM da C, Elias-Oliveira J, Guimarães JB et al (2023) Xenogeneic mesenchymal stem cell biocurative improves skin wounds healing in diabetic mice by increasing mast cells and the regenerative profile. Regen Ther 22. https://doi.org/10.1016/j.reth.2022.12.006

Nedeau AE, Bauer RJ, Gallagher K, et al (2008) A CXCL5- and bFGF-dependent effect of PDGF-B-activated fibroblasts in promoting trafficking and differentiation of bone marrow-derived mesenchymal stem cells. Exp Cell Res 314:. https://doi.org/10.1016/j.yexcr.2008.04.007

El Agha E, Kramann R, Schneider RK et al (2017) Mesenchymal stem cells in fibrotic disease. Cell Stem Cell 21:166

Article  PubMed  Google Scholar 

Nakagawa H, Akita S, Fukui M et al (2005) Human mesenchymal stem cells successfully improve skin-substitute wound healing. British Journal of Dermatology 153. https://doi.org/10.1111/j.1365-2133.2005.06554.x

Dar ER, Makhdoomi DM, Gugjoo MB et al (2022) Cryopreserved allogeneic mesenchymal stem cells enhance wound repair in full thickness skin wound model and cattle clinical teat injuries. Curr Res Transl Med 70. https://doi.org/10.1016/j.retram.2022.103356

McFarlin K, Gao X, Liu YB et al (2006) Bone marrow-derived mesenchymal stromal cells accelerate wound healing in the rat. Wound Repair and Regeneration 14. https://doi.org/10.1111/j.1743-6109.2006.00153.x

Du F, Liu M, Wang J, et al (2023) Metformin coordinates with mesenchymal cells to promote VEGF-mediated angiogenesis in diabetic wound healing through Akt/mTOR activation. Metabolism 140. https://doi.org/10.1016/j.metabol.2023.155398

Liu Z, Yang J, Chen Y et al (2022) P311 facilitates the angiogenesis and wound healing function of MSCs by increasing VEGF production. Front Immunol 13. https://doi.org/10.3389/fimmu.2022.821932

Fu X, Fang L, Li X et al (2006) Enhanced wound-healing quality with bone marrow mesenchymal stem cells autografting after skin injury. Wound Repair and Regeneration 14. https://doi.org/10.1111/j.1743-6109.2006.00128.x

Han Y, Sun T, Han Y et al (2019) Human umbilical cord mesenchymal stem cells implantation accelerates cutaneous wound healing in diabetic rats via the Wnt signaling pathway. Eur J Med Res 24. https://doi.org/10.1186/s40001-019-0366-9

Li JY, Ren KK, Zhang WJ et al (2019) Human amniotic mesenchymal stem cells and their paracrine factors promote wound healing by inhibiting heat stress-induced skin cell apoptosis and enhancing their proliferation through activating PI3K/AKT signaling pathway. Stem Cell Res Ther 10. https://doi.org/10.1186/s13287-019-1366-y

Sasaki M, Abe R, Fujita Y et al (2008) Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into multiple skin cell type. The Journal of Immunology 180. https://doi.org/10.4049/jimmunol.180.4.2581

Putra A, Alif I, Hamra N et al (2020) Msc-released tgf-β regulate α-sma expression of myofibroblast during wound healing. J Stem Cells Regen Med 16. https://doi.org/10.46582/jsrm.1602011

Jiang D, Singh K, Muschhammer J et al (2020) MSCs rescue impaired wound healing in a murine LAD1 model by adaptive responses to low TGF‐β1 levels. EMBO Rep 21. https://doi.org/10.15252/embr.201949115

Jiang D, Scharffetter-Kochanek K (2020) Mesenchymal stem cells adaptively respond to environmental cues thereby improving granulation tissue formation and wound healing. Front Cell Dev Biol 8. https://doi.org/10.3389/fcell.2020.00697

Li X, Guo L, Liu Y et al (2018) MicroRNA-21 promotes wound healing via the Smad7-Smad2/3-Elastin pathway. Exp Cell Res 362. https://doi.org/10.1016/j.yexcr.2017.11.019

Loboda A, Sobczak M, Jozkowicz A, Dulak J (2016) TGF- β 1/Smads and miR-21 in Renal Fibrosis and Inflammation. Mediators Inflamm 2016:12

Article  Google Scholar 

Li Q, Zhang D, Wang Y et al (2013) MiR-21/Smad 7 signaling determines TGF-β1-induced CAF formation. Sci Rep 3. https://doi.org/10.1038/srep02038

Zollino I, Campioni D, Sibilla MG et al (2019) A phase II randomized clinical trial for the treatment of recalcitrant chronic leg ulcers using centrifuged adipose tissue containing progenitor cells. Cytotherapy 21. https://doi.org/10.1016/j.jcyt.2018.10.012

Kerstan A, Dieter K, Niebergall-Roth E, et al (2022) Allogeneic ABCB5+ mesenchymal stem cells for treatment-refractory chronic venous ulcers: a phase I/IIa clinical trial. JID Innov 2:. https://doi.org/10.1016/j.xjidi.2021.100067

Kavala A, Turkyilmaz S (2018) Autogenously derived regenerative cell therapy for venous leg ulcers. Archives of Medical Science – Atherosclerotic Diseases 3. https://doi.org/10.5114/amsad.2018.81000

Arango-Rodríguez ML, Solarte-David VA, Becerra-Bayona SM et al (2022) Role of mesenchymal stromal cells derivatives in diabetic foot ulcers: a controlled randomized phase 1/2 clinical trial. Cytotherapy 24. https://doi.org/10.1016/j.jcyt.2022.04.002

Caplan H, Olson SD, Kumar A, et al (2019) Mesenchymal stromal cell therapeutic delivery: translational challenges to clinical application. Front Immunol 10. https://doi.org/10.3389/fimmu.2019.01645

Ma T, Wu J, Mu J, Gao J (2022) Biomaterials reinforced MSCs transplantation for spinal cord injury repair. Asian J Pharm Sci 17:4

Article  CAS  PubMed 

留言 (0)

沒有登入
gif