The role of circular RNA targeting IGF2BPs in cancer—a potential target for cancer therapy

Tang X, Ren H, Guo M, Qian J et al (2021) Review on circular RNAs and new insights into their roles in cancer. Comput Struct Biotechnol J 19:910–928. https://doi.org/10.1016/j.csbj.2021.01.018

PubMed  PubMed Central  Google Scholar 

Gomes CPC, Schroen B, Kuster GM, Robinson EL et al (2020) Regulatory RNAs in heart failure. Circulation 141:313–328. https://doi.org/10.1161/circulationaha.119.042474

PubMed  PubMed Central  Google Scholar 

Adams BD, Parsons C, Slack FJ (2016) The tumor-suppressive and potential therapeutic functions of miR-34a in epithelial carcinomas. Expert Opin Ther Targets 20:737–753. https://doi.org/10.1517/14728222.2016.1114102

PubMed  Google Scholar 

Vafadar A, Shabaninejad Z, Movahedpour A, Mohammadi S et al (2019) Long non-coding RNAs as epigenetic regulators in cancer. Curr Pharm Des 25:3563–3577. https://doi.org/10.2174/1381612825666190830161528

PubMed  Google Scholar 

Abadi MH, Shafabakhsh R, Asemi Z, Mirzaei HR, Sahebnasagh R, Mirzaei H, Hamblin MR (2019) CFIm25 and alternative polyadenylation: conflicting roles in cancer. Cancer Letters 10(459):112–21. https://doi.org/10.1016/j.canlet.2019.114430

Google Scholar 

Yousefi F, Shabaninejad Z, Vakili S, Derakhshan M et al (2020) TGF-β and WNT signaling pathways in cardiac fibrosis: non-coding RNAs come into focus. Cell Commun Signal 18:87. https://doi.org/10.1186/s12964-020-00555-4

PubMed  PubMed Central  Google Scholar 

Wei LH, Guo JU (2020) Coding functions of “noncoding” RNAs. Science 367:1074–1075. https://doi.org/10.1126/science.aba6117

PubMed  Google Scholar 

Hammell CM, Lubin I, Boag PR, Blackwell TK et al (2009) nhl-2 modulates microRNA activity in Caenorhabditis elegans. Cell 136:926–938. https://doi.org/10.1016/j.cell.2009.01.053

PubMed  PubMed Central  Google Scholar 

Slack FJ, Chinnaiyan AM (2019) The Role of Non-coding RNAs in Oncology. Cell 179:1033–1055. https://doi.org/10.1016/j.cell.2019.10.017

PubMed  PubMed Central  Google Scholar 

Abbaszadeh-Goudarzi K, Radbakhsh S, Pourhanifeh MH, Khanbabaei H et al (2020) Circular RNA and diabetes: epigenetic regulator with diagnostic role. Curr Mol Med 20:516–526. https://doi.org/10.2174/1566524020666200129142106

PubMed  Google Scholar 

Shabaninejad Z, Vafadar A, Movahedpour A, Ghasemi Y et al (2019) Circular RNAs in cancer: new insights into functions and implications in ovarian cancer. J Ovarian Res 12:84. https://doi.org/10.1186/s13048-019-0558-5

PubMed  PubMed Central  Google Scholar 

Patop IL, Wüst S, Kadener S (2019) Past, present, and future of circRNAs. Embo j 38:e100836. https://doi.org/10.15252/embj.2018100836

PubMed  PubMed Central  Google Scholar 

Zang J, Lu D, Xu A (2020) The interaction of circRNAs and RNA binding proteins: an important part of circRNA maintenance and function. J Neurosci Res 98:87–97. https://doi.org/10.1002/jnr.24356

PubMed  Google Scholar 

Nielsen J, Christiansen J, Lykke-Andersen J, Johnsen AH et al (1999) A family of insulin-like growth factor II mRNA-binding proteins represses translation in late development. Mol Cell Biol 19:1262–1270. https://doi.org/10.1128/mcb.19.2.1262

PubMed  PubMed Central  Google Scholar 

Bell JL, Wächter K, Mühleck B, Pazaitis N et al (2013) Insulin-like growth factor 2 mRNA-binding proteins (IGF2BPs): post-transcriptional drivers of cancer progression? Cell Mol Life Sci 70:2657–2675. https://doi.org/10.1007/s00018-012-1186-z

PubMed  Google Scholar 

Wächter K, Köhn M, Stöhr N, Hüttelmaier S (2013) Subcellular localization and RNP formation of IGF2BPs (IGF2 mRNA-binding proteins) is modulated by distinct RNA-binding domains. Biol Chem 394:1077–1090. https://doi.org/10.1515/hsz-2013-0111

PubMed  Google Scholar 

Nielsen J, Kristensen MA, Willemoës M, Nielsen FC et al (2004) Sequential dimerization of human zipcode-binding protein IMP1 on RNA: a cooperative mechanism providing RNP stability. Nucleic Acids Res 32:4368–4376. https://doi.org/10.1093/nar/gkh754

PubMed  PubMed Central  Google Scholar 

Farina KL, Huttelmaier S, Musunuru K, Darnell R et al (2003) Two ZBP1 KH domains facilitate beta-actin mRNA localization, granule formation, and cytoskeletal attachment. J Cell Biol 160:77–87. https://doi.org/10.1083/jcb.200206003

PubMed  PubMed Central  Google Scholar 

Nielsen J, Adolph SK, Rajpert-De Meyts E, Lykke-Andersen J et al (2003) Nuclear transit of human zipcode-binding protein IMP1. Biochem J 376:383–91. https://doi.org/10.1042/bj20030943

PubMed  PubMed Central  Google Scholar 

Huang H, Weng H, Sun W, Qin X et al (2018) Recognition of RNA N(6)-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat Cell Biol 20:285–295. https://doi.org/10.1038/s41556-018-0045-z

PubMed  PubMed Central  Google Scholar 

Lederer M, Bley N, Schleifer C, Hüttelmaier S (2014) The role of the oncofetal IGF2 mRNA-binding protein 3 (IGF2BP3) in cancer. Semin Cancer Biol 29:3–12. https://doi.org/10.1016/j.semcancer.2014.07.006

PubMed  Google Scholar 

Ivanov P, Kedersha N, Anderson P (2019) Stress granules and processing bodies in translational control. Cold Spring Harb Perspect Biol 11:a032813. https://doi.org/10.1101/cshperspect.a032813

PubMed  PubMed Central  Google Scholar 

Zhu TY, Hong LL, Ling ZQ (2023) Oncofetal protein IGF2BPs in human cancer: functions, mechanisms and therapeutic potential. Biomark Res 11:62. https://doi.org/10.1186/s40364-023-00499-0

PubMed  PubMed Central  Google Scholar 

Sung H, Ferlay J, Siegel RL, Laversanne M et al (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71:209–249. https://doi.org/10.3322/caac.21660

PubMed  Google Scholar 

Chidambaranathan-Reghupaty S, Fisher PB, Sarkar D (2021) Hepatocellular carcinoma (HCC): epidemiology, etiology and molecular classification. Adv Cancer Res 149:1–61. https://doi.org/10.1016/bs.acr.2020.10.001

PubMed  Google Scholar 

Chen L, Ying X, Zhang D, Lai L et al (2021) Iodine-125 brachytherapy can prolong progression-free survival of patients with locoregional recurrence and/or residual hepatocellular carcinoma after radiofrequency ablation. Cancer Biother Radiopharm 36:820–826. https://doi.org/10.1089/cbr.2020.3647

PubMed  Google Scholar 

Zhang T, Mo Z, Duan G, Tang R et al (2021) (125)I Seed promotes apoptosis in non-small lung cancer cells via the p38 MAPK-MDM2-p53 signaling pathway. Front Oncol 11:582511. https://doi.org/10.3389/fonc.2021.582511

PubMed  PubMed Central  Google Scholar 

Ma ZH, Yang Y, Zou L, Luo KY (2012) 125I seed irradiation induces up-regulation of the genes associated with apoptosis and cell cycle arrest and inhibits growth of gastric cancer xenografts. J Exp Clin Cancer Res 31:61. https://doi.org/10.1186/1756-9966-31-61

PubMed  PubMed Central  Google Scholar 

Bai M, Zeng Z, Li L, Wu Q et al (2018) Chiral ruthenium(ii) complex as potent radiosensitizer of (125)I through DNA-damage-mediated apoptosis. RSC Adv 8:20612–20618. https://doi.org/10.1039/c8ra03383h

PubMed  PubMed Central  Google Scholar 

Li C, Zhang F, Zhang W, Zhang L et al (2010) Feasibility of (125)I brachytherapy combined with sorafenib treatment in patients with multiple lung metastases after liver transplantation for hepatocellular carcinoma. J Cancer Res Clin Oncol 136:1633–1640. https://doi.org/10.1007/s00432-010-0821-z

PubMed  Google Scholar 

Yu J, Li W, Hou GJ, Sun DP et al (2023) Circular RNA cFAM210A, degradable by HBx, inhibits HCC tumorigenesis by suppressing YBX1 transactivation. Exp Mol Med 55:2390–2401. https://doi.org/10.1038/s12276-023-01108-8

PubMed  PubMed Central  Google Scholar 

Xu L, Wang P, Li L, Li L et al (2023) circPSD3 is a promising inhibitor of uPA system to inhibit vascular invasion and metastasis in hepatocellular carcinoma. Mol Cancer 22:174. https://doi.org/10.1186/s12943-023-01882-z

PubMed  PubMed Central  Google Scholar 

Xu J, Ji L, Liang Y, Wan Z et al (2020) CircRNA-SORE mediates sorafenib resistance in hepatocellular carcinoma by stabilizing YBX1. Signal Transduct Target Ther 5:298. https://doi.org/10.1038/s41392-020-00375-5

PubMed  PubMed Central  Google Scholar 

Yan Q, Xu R, Zhu L, Cheng X et al (2013) BAL1 and its partner E3 ligase, BBAP, link Poly(ADP-ribose) activation, ubiquitylation, and double-strand DNA repair independent of ATM, MDC1, and RNF8. Mol Cell Biol 33:845–857. https://doi.org/10.1128/mcb.00990-12

PubMed  PubMed Central  Google Scholar 

Yan Q, Dutt S, Xu R, Graves K et al (2009) BBAP monoubiquitylates histone H4 at lysine 91 and selectively modulates the DNA damage response. Mol Cell 36:110–120. https://doi.org/10.1016/j.molcel.2009.08.019

留言 (0)

沒有登入
gif