Understanding vertebrate immunity through comparative immunology

Kaufmann, S. H. Immunology’s foundation: the 100-year anniversary of the Nobel Prize to Paul Ehrlich and Elie Metchnikoff. Nat. Immunol. 9, 705–712 (2008).

Article  PubMed  CAS  Google Scholar 

Bruton, O. C. Agammaglobulinemia. Pediatrics 9, 722–728 (1952).

Article  PubMed  CAS  Google Scholar 

Porter, H. M. The demonstration of delayed-type reactivity in congenital agammaglobulinemia. Ann. N. Y. Acad. Sci. 64, 932–935 (1957).

Article  PubMed  CAS  Google Scholar 

Cooper, M. D., Peterson, R. D. & Good, R. A. Delineation of the thymic and bursal lymphoid systems in the chicken. Nature 205, 143–146 (1965).

Article  PubMed  CAS  Google Scholar 

Wein, T. & Sorek, R. Bacterial origins of human cell-autonomous innate immune mechanisms. Nat. Rev. Immunol. 22, 629–638 (2022).

Article  PubMed  CAS  Google Scholar 

Cooper, M. D. & Alder, M. N. The evolution of adaptive immune systems. Cell 124, 815–822 (2006).

Article  PubMed  CAS  Google Scholar 

Boehm, T. et al. Evolution of alternative adaptive immune systems in vertebrates. Annu. Rev. Immunol. 36, 19–42 (2018).

Article  PubMed  CAS  Google Scholar 

Janvier, P. Facts and fancies about early fossil chordates and vertebrates. Nature 520, 483–489 (2015).

Article  PubMed  CAS  Google Scholar 

Kumar, S. & Hedges, S. B. A molecular timescale for vertebrate evolution. Nature 392, 917–920 (1998).

Article  PubMed  CAS  Google Scholar 

McFall-Ngai, M. Adaptive immunity: care for the community. Nature 445, 153 (2007).

Article  PubMed  CAS  Google Scholar 

Shine, E. E. & Crawford, J. M. Molecules from the microbiome. Annu. Rev. Biochem. 90, 789–815 (2021).

Article  PubMed  CAS  Google Scholar 

Chung, H. et al. Gut immune maturation depends on colonization with a host-specific microbiota. Cell 149, 1578–1593 (2012).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Schatz, D. G., Oettinger, M. A. & Baltimore, D. The V(D)J recombination activating gene, RAG-1. Cell 59, 1035–1048 (1989).

Article  PubMed  CAS  Google Scholar 

Nagawa, F. et al. Antigen-receptor genes of the agnathan lamprey are assembled by a process involving copy choice. Nat. Immunol. 8, 206–213 (2007).

Article  PubMed  CAS  Google Scholar 

Rogozin, I. B. et al. Evolution and diversification of lamprey antigen receptors: evidence for involvement of an AID-APOBEC family cytosine deaminase. Nat. Immunol. 8, 647–656 (2007).

Article  PubMed  CAS  Google Scholar 

Morimoto, R. et al. Cytidine deaminase 2 is required for VLRB antibody gene assembly in lampreys. Sci. Immunol. 5, eaba0925 (2020).

Article  PubMed  CAS  Google Scholar 

Krishnan, A., Iyer, L. M., Holland, S. J., Boehm, T. & Aravind, L. Diversification of AID/APOBEC-like deaminases in metazoa: multiplicity of clades and widespread roles in immunity. Proc. Natl Acad. Sci. USA 115, E3201–E3210 (2018).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Tsakou-Ngouafo, L., Paganini, J., Kaufman, J. & Pontarotti, P. Origins of the RAG transposome and the MHC. Trends Immunol. 41, 561–571 (2020).

Article  PubMed  CAS  Google Scholar 

Liu, C., Zhang, Y., Liu, C. C. & Schatz, D. G. Structural insights into the evolution of the RAG recombinase. Nat. Rev. Immunol. 22, 353–370 (2022).

Article  PubMed  CAS  Google Scholar 

Boehm, T., Morimoto, R., Trancoso, I. & Aleksandrova, N. Genetic conflicts and the origin of self/nonself-discrimination in the vertebrate immune system. Trends Immunol. 44, 372–383 (2023).

Article  PubMed  CAS  Google Scholar 

Du Pasquier, L., Zucchetti, I. & De Santis, R. Immunoglobulin superfamily receptors in protochordates: before RAG time. Immunol. Rev. 198, 233–248 (2004).

Article  PubMed  CAS  Google Scholar 

Dornburg, A. & Yoder, J. A. On the relationship between extant innate immune receptors and the evolutionary origins of jawed vertebrate adaptive immunity. Immunogenetics 74, 111–128 (2022).

Article  PubMed  CAS  Google Scholar 

Sakano, H., Hüppi, K., Heinrich, G. & Tonegawa, S. Sequences at the somatic recombination sites of immunoglobulin light-chain genes. Nature 280, 288–294 (1979).

Article  PubMed  CAS  Google Scholar 

Zucchetti, I., De Santis, R., Grusea, S., Pontarotti, P. & Du Pasquier, L. Origin and evolution of the vertebrate leukocyte receptors: the lesson from tunicates. Immunogenetics 61, 463–481 (2009).

Article  PubMed  CAS  Google Scholar 

Williams, A. F. & Barclay, A. N. The immunoglobulin superfamily-domains for cell surface recognition. Annu. Rev. Immunol. 6, 381–405 (1998).

Article  Google Scholar 

Ohta, Y., Kasahara, M., O’Connor, T. D. & Flajnik, M. F. Inferring the ‘primordial immune complex’: origins of MHC class I and antigen receptors revealed by comparative genomics. J. Immunol. 203, 1882–1896 (2019).

Article  PubMed  CAS  Google Scholar 

Flajnik, M. F. et al. An ancient MHC-linked gene encodes a nonrearranging shark antibody, UrIg, convergent with IgG. J. Immunol. 211, 1042–1051 (2023).

Article  PubMed  CAS  Google Scholar 

Hirano, M. et al. Evolutionary implications of a third lymphocyte lineage in lampreys. Nature 501, 435–438 (2013).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Das, S. et al. Evolution of two distinct variable lymphocyte receptors in lampreys: VLRD and VLRE. Cell Rep. 42, 112933 (2023).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Greenberg, A. S. et al. A new antigen receptor gene family that undergoes rearrangement and extensive somatic diversification in sharks. Nature 374, 168–173 (1995).

Article  PubMed  CAS  Google Scholar 

Hamers-Casterman, C. et al. Naturally occurring antibodies devoid of light chains. Nature 363, 446–448 (1993).

Article  PubMed  CAS  Google Scholar 

Wang, F. et al. Reshaping antibody diversity. Cell 153, 1379–1393 (2013).

Article  PubMed 

留言 (0)

沒有登入
gif