How oxygenation shapes immune responses: emerging roles for physioxia and pathological hypoxia

Gonzalez, F. J., Xie, C. & Jiang, C. The role of hypoxia-inducible factors in metabolic diseases. Nat. Rev. Endocrinol. 15, 21–32 (2019).

Article  CAS  Google Scholar 

Yuan, X., Ruan, W., Bobrow, B., Carmeliet, P. & Eltzschig, H. K. Targeting hypoxia-inducible factors: therapeutic opportunities and challenges. Nat. Rev. Drug Discov. 23, 175–200 (2023).

Article  PubMed  Google Scholar 

Taylor, C. T. & Colgan, S. P. Regulation of immunity and inflammation by hypoxia in immunological niches. Nat. Rev. Immunol. 17, 774–785 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wicks, E. E. & Semenza, G. L. Hypoxia-inducible factors: cancer progression and clinical translation. J. Clin. Invest. 132, e159839 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kaelin, W. G. & Ratcliffe, P. J. Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol. Cell 30, 393–402 (2008). A review of the PHD and HIF oxygen-sensing pathways.

Article  CAS  PubMed  Google Scholar 

Lim, H. S. Cardiogenic shock: failure of oxygen delivery and oxygen utilization. Clin. Cardiol. 39, 477–483 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Shepherd, S. J. & Pearse, R. M. Role of central and mixed venous oxygen saturation measurement in perioperative care. Anesthesiology 111, 649–656 (2009).

Article  PubMed  Google Scholar 

Dunn, J. O. C., Mythen, M. G. & Grocott, M. P. Physiology of oxygen transport. BJA Educ. 16, 341–348 (2016).

Article  Google Scholar 

Ahmed, M. H., Ghatge, M. S. & Safo, M. K. Hemoglobin: structure, function and allostery. in Subcellular Biochemistry Vol. 94, 345–382 (Springer, 2020).

Pittman, R. N. Oxygen transport and exchange in the microcirculation. Microcirculation 12, 59–70 (2005).

Article  CAS  PubMed  Google Scholar 

Krogh, A. The number and distribution of capillaries in muscles with calculations of the oxygen pressure head necessary for supplying the tissue. J. Physiol. 52, 409–415 (1919).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Poole, D. C. & Musch, T. I. Capillary-mitochondrial oxygen transport in muscle: paradigm shifts. Function 4, zqad013 (2023).

Article  PubMed  PubMed Central  Google Scholar 

Beck, K. C. et al. Relationship between cardiac output and oxygen consumption during upright cycle exercise in healthy humans. J. Appl. Physiol. 101, 1474–1480 (2006).

Article  PubMed  Google Scholar 

Fitzgerald, M. P. The changes in the breathing and the blood at various high altitudes. Philos. Trans. R. Soc. Lond. 203, 351–371 (1913). Seminal paper describing the compensatory physiological changes in response to altitude and its consequent hypobaric hypoxia, demonstrating that oxygen-sensing systems are at play.

Google Scholar 

Esipova, T. V. et al. Oxyphor 2P: a high-performance probe for deep-tissue longitudinal oxygen imaging. Cell Metab. 29, 736–744.e7 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Narazaki, A. et al. Determination of the physiological range of oxygen tension in bone marrow monocytes using two-photon phosphorescence lifetime imaging microscopy. Sci. Rep. https://doi.org/10.1038/s41598-022-07521-9 (2022).

Lebedev, A. Y., Troxler, T. & Vinogradov, S. A. Design of metalloporphyrin-based dendritic nanoprobes for two-photon microscopy of oxygen. J. Porphyr. Phthalocyanines 12, 1261–1269 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Finikova, O. S. et al. Oxygen microscopy by two-photon-excited phosphorescence. ChemPhysChem 9, 1673–1679 (2008). The article describing the development of a method to measure tissue oxygenation using intravital microscopy and a metalloporphyrin-based nanoprobe, in live animals.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Leach, R. M. & Treacher, D. F. The pulmonary physician in critical care 2: oxygen delivery and consumption in the critically ill. Thorax 57, 170–177 (2002).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carreau, A., Hafny-Rahbi, B., El Matejuk, A., Grillon, C. & Kieda, C. Why is the partial oxygen pressure of human tissues a crucial parameter? Small molecules and hypoxia. J. Cell. Mol. Med. 15, 1239–1253 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

McKeown, S. R. Defining normoxia, physoxia and hypoxia in tumours — implications for treatment response. Br. J. Radiol. 87, 20130676 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schell, R. M. & Cole, D. J. Cerebral monitoring: jugular venous oximetry. Anesth. Analg. 90, 559–566 (2000).

Article  CAS  PubMed  Google Scholar 

Lyons, D. G., Parpaleix, A., Roche, M. & Charpak, S. Mapping oxygen concentration in the awake mouse brain. eLife 5, e12024 (2016).

Google Scholar 

Ortiz-Prado, E., Natah, S., Srinivasan, S. & Dunn, J. F. A method for measuring brain partial pressure of oxygen in unanesthetized unrestrained subjects: the effect of acute and chronic hypoxia on brain tissue PO2. J. Neurosci. Methods 193, 217–225 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kasischke, K. A. et al. Two-photon NADH imaging exposes boundaries of oxygen diffusion in cortical vascular supply regions. J. Cereb. Blood Flow Metab. 31, 68–81 (2011).

Article  CAS  PubMed  Google Scholar 

Sakadžić, S. et al. Large arteriolar component of oxygen delivery implies a safe margin of oxygen supply to cerebral tissue. Nat. Commun. 5, 5734 (2014).

Article  PubMed  Google Scholar 

Lecoq, J. et al. Odor-evoked oxygen consumption by action potential and synaptic transmission in the olfactory bulb. J. Neurosci. 29, 1424–1433 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Parpaleix, A., Houssen, Y. G. & Charpak, S. Imaging local neuronal activity by monitoring PO2 transients in capillaries. Nat. Med. 19, 241–246 (2013).

Article  CAS  PubMed  Google Scholar 

Thompson, J. K., Peterson, M. R. & Freeman, R. D. Single-neuron activity and tissue oxygenation in the cerebral cortex. Science 299, 1070–1072 (2003).

Article  CAS  PubMed  Google Scholar 

Li, Q. & Barres, B. A. Microglia and macrophages in brain homeostasis and disease. Nat. Rev. Immunol. 18, 225–242 (2018).

Article  CAS  PubMed  Google Scholar 

Gorelick, P. B. et al. Vascular contributions to cognitive impairment and dementia. Stroke 42, 2672–2713 (2011).

Article  PubMed  PubMed Central  Google Scholar 

Ema, H. & Suda, T. Two anatomically distinct niches regulate stem cell activity. Blood 120, 2174–2181 (2012).

Article  CAS  PubMed  Google Scholar 

Parmar, K., Mauch, P., Vergilio, J. A., Sackstein, R. & Down, J. D. Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia. Proc. Natl Acad. Sci. USA 104, 5431–5436 (2007). Important paper linking stemness to bone marrow vasculature and oxygenation.

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif