Kewley, R. J., Whitelaw, M. L. & Chapman-Smith, A. The mammalian basic helix-loop-helix/PAS family of transcriptional regulators. Int. J. Biochem. Cell Biol. 36, 189–204 (2004).
Article CAS PubMed Google Scholar
Greenlee, W. F. & Poland, A. Nuclear uptake of 2,3,7,8-tetrachlorodibenzo-p-dioxin in C57BL/6J and DBA/2J mice. Role of the hepatic cytosol receptor protein. J. Biol. Chem. 254, 9814–9821 (1979).
Article CAS PubMed Google Scholar
Poland, A., Glover, E. & Kende, A. S. Stereospecific, high affinity binding of 2,3,7,8-tetrachlorodibenzo-p-dioxin by hepatic cytosol. Evidence that the binding species is receptor for induction of aryl hydrocarbon hydroxylase. J. Biol. Chem. 251, 4936–4946 (1976).
Article CAS PubMed Google Scholar
Riddick, D. S. Fifty years of aryl hydrocarbon receptor research as reflected in the pages of Drug Metabolism and Disposition. Drug. Metab. Dispos. 51, 657–671 (2023).
Article CAS PubMed Google Scholar
Lin, L., Dai, Y. & Xia, Y. An overview of aryl hydrocarbon receptor ligands in the last two decades (2002–2022): a medicinal chemistry perspective. Eur. J. Med. Chem. 244, 114845 (2022).
Article CAS PubMed Google Scholar
Hahn, M. E. & Karchner, S. I. in The AH Receptor in Biology and Toxicology (ed. Pohjanvirta, R.) 387–403 (Wiley, 2011).
Powell-Coffman, J. A., Bradfield, C. A. & Wood, W. B. Caenorhabditis elegans orthologs of the aryl hydrocarbon receptor and its heterodimerization partner the aryl hydrocarbon receptor nuclear translocator. Proc. Natl Acad. Sci. USA 95, 2844–2849 (1998).
Article CAS PubMed PubMed Central Google Scholar
Duncan, D. M., Burgess, E. A. & Duncan, I. Control of distal antennal identity and tarsal development in Drosophila by spineless-aristapedia, a homolog of the mammalian dioxin receptor. Genes Dev. 12, 1290–1303 (1998).
Article CAS PubMed PubMed Central Google Scholar
Moura-Alves, P. et al. AhR sensing of bacterial pigments regulates antibacterial defence. Nature 512, 387–392 (2014). This paper shows that the AHR senses bacterial pigments and modulates the immune responses against P. aeruginosa and M. tuberculosis, proposing the AHR as a new class of PRR.
Article CAS PubMed Google Scholar
Moura-Alves, P. et al. Host monitoring of quorum sensing during Pseudomonas aeruginosa infection. Science 366, eaaw1629 (2019). This paper shows that different P. aeruginosa quorum-sensing molecules expressed at different bacterial growth stages modulate the AHR (agonists and antagonists) and AHR-elicited responses, affecting host defence against infection.
Article CAS PubMed Google Scholar
Larigot, L. et al. Identification of modulators of the C. elegans aryl hydrocarbon receptor and characterization of transcriptomic and metabolic AhR-1 profiles. Antioxidants 11, 1030 (2022). This paper shows that bacterial ligands (P. aeruginosa phenazines) activate the AHR in invertebrates (C. elegans), in opposition to dioxin.
Article CAS PubMed PubMed Central Google Scholar
Schwartzkopf, C. M. et al. Tripartite interactions between filamentous Pf4 bacteriophage, Pseudomonas aeruginosa, and bacterivorous nematodes. PLoS Pathog. 19, e1010925 (2023). This paper shows that the AHR in C. elegans (invertebrate) responds to bacterial ligands, namely, PYO from P. aeruginosa, and modulates host defence against infection.
Article CAS PubMed PubMed Central Google Scholar
Fukunaga, B. N., Probst, M. R., Reisz-Porszasz, S. & Hankinson, O. Identification of functional domains of the aryl hydrocarbon receptor. J. Biol. Chem. 270, 29270–29278 (1995).
Article CAS PubMed Google Scholar
Stockinger, B., Di Meglio, P., Gialitakis, M. & Duarte, J. H. The aryl hydrocarbon receptor: multitasking in the immune system. Annu. Rev. Immunol. 32, 403–432 (2014). This article reviews AHR functions and molecular interactions in the immune system, focusing on barrier organs.
Article CAS PubMed Google Scholar
Rothhammer, V. & Quintana, F. J. The aryl hydrocarbon receptor: an environmental sensor integrating immune responses in health and disease. Nat. Rev. Immunol. 19, 184–197 (2019). This article reviews the AHR transcriptional programs in the immune system and their role in autoimmune and neurological diseases.
Article CAS PubMed Google Scholar
Pongratz, I., Antonsson, C., Whitelaw, M. L. & Poellinger, L. Role of the PAS domain in regulation of dimerization and DNA binding specificity of the dioxin receptor. Mol. Cell Biol. 18, 4079–4088 (1998).
Article CAS PubMed PubMed Central Google Scholar
Chapman-Smith, A., Lutwyche, J. K. & Whitelaw, M. L. Contribution of the Per/Arnt/Sim (PAS) domains to DNA binding by the basic helix-loop-helix PAS transcriptional regulators. J. Biol. Chem. 279, 5353–5362 (2004).
Article CAS PubMed Google Scholar
Janeway, C. A. Jr. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb. Symp. Quant. Biol. 54, 1–13 (1989).
Article CAS PubMed Google Scholar
Li, D. & Wu, M. Pattern recognition receptors in health and diseases. Signal Transduct. Target. Ther. 6, 291 (2021).
Article CAS PubMed PubMed Central Google Scholar
Magiatis, P. et al. Malassezia yeasts produce a collection of exceptionally potent activators of the Ah (dioxin) receptor detected in diseased human skin. J. Invest. Dermatol. 133, 2023–2030 (2013). This paper demonstrates that the AHR senses and is activated by yeast-derived molecules.
Article CAS PubMed PubMed Central Google Scholar
Stange, E. L. et al. Staphylococcus aureus activates the aryl hydrocarbon receptor in human keratinocytes. J. Innate Immun. 14, 582–592 (2022).
Rademacher, F. et al. Staphylococcus epidermidis activates aryl hydrocarbon receptor signaling in human keratinocytes: implications for cutaneous defense. J. Innate Immun. 11, 125–135 (2019). This paper shows that S. epidermidis produces small molecules that modulate the AHR.
Article CAS PubMed Google Scholar
Engen, S. A., Rorvik, G. H., Schreurs, O., Blix, I. J. & Schenck, K. The oral commensal Streptococcus mitis activates the aryl hydrocarbon receptor in human oral epithelial cells. Int. J. Oral Sci. 9, 145–150 (2017).
Article CAS PubMed PubMed Central Google Scholar
Takamura, T. et al. Lactobacillus bulgaricus OLL1181 activates the aryl hydrocarbon receptor pathway and inhibits colitis. Immunol. Cell Biol. 89, 817–822 (2011).
Article CAS PubMed PubMed Central Google Scholar
Ozcam, M. et al. Gut symbionts Lactobacillus reuteri R2lc and 2010 encode a polyketide synthase cluster that activates the mammalian aryl hydrocarbon receptor. Appl. Environ. Microbiol. 85, e01661-18 (2019).
Article CAS PubMed PubMed Central Google Scholar
Dong, F. & Perdew, G. H. The aryl hydrocarbon receptor as a mediator of host–microbiota interplay. Gut Microbes 12, 1859812 (2020).
Article PubMed PubMed Central Google Scholar
Han, H., Safe, S., Jayaraman, A. & Chapkin, R. S. Diet–host–microbiota interactions shape aryl hydrocarbon receptor ligand production to modulate intestinal homeostasis. Annu. Rev. Nutr. 41, 455–478 (2021).
Article CAS PubMed PubMed Central Google Scholar
Korecka, A. et al. Bidirectional communication between the aryl hydrocarbon receptor (AhR) and the microbiome tunes host metabolism. NPJ Biofilms Microbiomes 2, 16014 (2016).
Article PubMed PubMed Central Google Scholar
van den Bogaard, E. H., Esser, C. & Perdew, G. H. The aryl hydrocarbon receptor at the forefront of host–microbe interactions in the skin: a perspective on current knowledge gaps and directions for future research and therapeutic applications. Exp. Dermatol. 30, 1477–1483 (2021).
Article PubMed PubMed Central Google Scholar
Safe, S., Cheng, Y. & Jin, U. H. The aryl hydrocarbon receptor (AhR) as a drug target for cancer chemotherapy. Curr. Opin. Toxicol. 2, 24–29 (2017).
留言 (0)