Caldwell, R. W., Rodriguez, P. C., Toque, H. A., Narayanan, S. P. & Caldwell, R. B. Arginase: a multifaceted enzyme important in health and disease. Physiol. Rev. 98, 641–665 (2018).
Article CAS PubMed Central PubMed Google Scholar
Bronte, V. & Zanovello, P. Regulation of immune responses by l-arginine metabolism. Nat. Rev. Immunol. 5, 641–654 (2005).
Article CAS PubMed Google Scholar
Palte, R. L. et al. Cryo-EM structures of inhibitory antibodies complexed with arginase 1 provide insight into mechanism of action. Commun. Biol. 4, 927 (2021).
Article CAS PubMed Central PubMed Google Scholar
Grzywa, T. M. et al. Myeloid cell-derived arginase in cancer immune response. Front. Immunol. 11, 938 (2020).
Article CAS PubMed Central PubMed Google Scholar
Geiger, R. et al. l-Arginine modulates T cell metabolism and enhances survival and anti-tumor activity. Cell 167, 829–842.e13 (2016). The first article to show the roles of l-arginine and ARG2 in regulating T cell metabolism and function to enhance T cell survival and the antitumour response by preserving a memory T cell phenotype.
Article CAS PubMed Central PubMed Google Scholar
West, E. E. et al. Loss of CD4+ T cell-intrinsic arginase 1 accelerates Th1 response kinetics and reduces lung pathology during influenza infection. Immunity 56, 2036–2053.e12 (2023). This article shows that ARG1 has a CD4+T cell-intrinsic role during antiviral TH1 cell responses in mice and humans, with implications for TH1 cell-associated tissue pathologies.
Article CAS PubMed Central PubMed Google Scholar
Palka, J., Oscilowska, I. & Szoka, L. Collagen metabolism as a regulator of proline dehydrogenase/proline oxidase-dependent apoptosis/autophagy. Amino Acids 53, 1917–1925 (2021).
Article CAS PubMed Central PubMed Google Scholar
Olivares, O. et al. Collagen-derived proline promotes pancreatic ductal adenocarcinoma cell survival under nutrient limited conditions. Nat. Commun. 8, 16031 (2017).
Article CAS PubMed Central PubMed Google Scholar
Kay, E. J., Zanivan, S. & Rufini, A. Proline metabolism shapes the tumor microenvironment: from collagen deposition to immune evasion. Curr. Opin. Biotechnol. 84, 103011 (2023).
Article CAS PubMed Google Scholar
Madeo, F., Eisenberg, T., Pietrocola, F. & Kroemer, G. Spermidine in health and disease. Science 359, eaan2788 (2018).
Husson, A., Brasse-Lagnel, C., Fairand, A., Renouf, S. & Lavoinne, A. Argininosuccinate synthetase from the urea cycle to the citrulline–NO cycle. Eur. J. Biochem. 270, 1887–1899 (2003).
Werner, A. et al. Induced arginine transport via cationic amino acid transporter-1 is necessary for human T-cell proliferation. Eur. J. Immunol. 46, 92–103 (2016).
Yeramian, A. et al. Macrophages require distinct arginine catabolism and transport systems for proliferation and for activation. Eur. J. Immunol. 36, 1516–1526 (2006).
Garcia-Navas, R., Munder, M. & Mollinedo, F. Depletion of l-arginine induces autophagy as a cytoprotective response to endoplasmic reticulum stress in human T lymphocytes. Autophagy 8, 1557–1576 (2012).
Article CAS PubMed Central Google Scholar
Brunner, J. S. et al. Environmental arginine controls multinuclear giant cell metabolism and formation. Nat. Commun. 11, 431 (2020).
Article CAS PubMed Central Google Scholar
Werner, A. et al. Reconstitution of T cell proliferation under arginine limitation: activated human T cells take up citrulline via l-type amino acid transporter 1 and use it to regenerate arginine after induction of argininosuccinate synthase expression. Front. Immunol. 8, 864 (2017).
Article PubMed Central Google Scholar
Baydoun, A. R., Bogle, R. G., Pearson, J. D. & Mann, G. E. Discrimination between citrulline and arginine transport in activated murine macrophages: inefficient synthesis of NO from recycling of citrulline to arginine. Br. J. Pharmacol. 112, 487–492 (1994).
Article CAS PubMed Central Google Scholar
Qualls, J. E. et al. Sustained generation of nitric oxide and control of mycobacterial infection requires argininosuccinate synthase 1. Cell Host Microbe 12, 313–323 (2012).
Article CAS PubMed Central Google Scholar
Palmer, R. M., Ashton, D. S. & Moncada, S. Vascular endothelial cells synthesize nitric oxide from l-arginine. Nature 333, 664–666 (1988).
Wu, G. & Morris, S. M. Jr. Arginine metabolism: nitric oxide and beyond. Biochem. J. 336, 1–17 (1998).
Article CAS PubMed Central Google Scholar
Berka, V., Wu, G., Yeh, H. C., Palmer, G. & Tsai, A. L. Three different oxygen-induced radical species in endothelial nitric-oxide synthase oxygenase domain under regulation by l-arginine and tetrahydrobiopterin. J. Biol. Chem. 279, 32243–32251 (2004).
Lee, J., Ryu, H., Ferrante, R. J., Morris, S. M. Jr & Ratan, R. R. Translational control of inducible nitric oxide synthase expression by arginine can explain the arginine paradox. Proc. Natl Acad. Sci. USA 100, 4843–4848 (2003).
Article CAS PubMed Central Google Scholar
Prabhakar, S. S., Zeballos, G. A., Montoya-Zavala, M. & Leonard, C. Urea inhibits inducible nitric oxide synthase in macrophage cell line. Am. J. Physiol. 273, C1882–C1888 (1997).
Boger, R. H. & Bode-Boger, S. M. Asymmetric dimethylarginine, derangements of the endothelial nitric oxide synthase pathway, and cardiovascular diseases. Semin. Thromb. Hemost. 26, 539–545 (2000).
Momma, T. Y. & Ottaviani, J. I. There is no direct competition between arginase and nitric oxide synthase for the common substrate l-arginine. Nitric Oxide 129, 16–24 (2022).
Kandasamy, P., Gyimesi, G., Kanai, Y. & Hediger, M. A. Amino acid transporters revisited: new views in health and disease. Trends Biochem. Sci. 43, 752–789 (2018).
Closs, E. I., Simon, A., Vekony, N. & Rotmann, A. Plasma membrane transporters for arginine. J. Nutr. 134, 2752S–2759S (2004).
Pi, M., Wu, Y., Lenchik, N. I., Gerling, I. & Quarles, L. D. GPRC6A mediates the effects of l-arginine on insulin secretion in mouse pancreatic islets. Endocrinology 153, 4608–4615 (2012).
Article CAS PubMed Central Google Scholar
Menjivar, R. E. et al. Arginase 1 is a key driver of immune suppression in pancreatic cancer. eLife 12, e80721 (2023).
Article CAS PubMed Central Google Scholar
Liao, X. et al. Kruppel-like factor 4 regulates macrophage polarization. J. Clin. Invest. 121, 2736–2749 (2011).
Article CAS PubMed Central Google Scholar
Gray, M. J., Poljakovic, M., Kepka-Lenhart, D. & Morris, S. M. Jr. Induction of arginase I transcription by IL-4 requires a composite DNA response element for STAT6 and C/EBPβ. Gene 353, 98–106 (2005). This article defines the transcriptional regulation of ARG1 induced by IL-4 and describes how acetylation and deacetylation affect the binding of STAT6 and C/EBPβ to the Arg1 promoter for transcriptional activation.
Ishii, M. et al. Epigenetic regulation of the alternatively activated macrophage phenotype. Blood 114, 3244–3254 (2009).
Article CAS PubMed Central Google Scholar
Pourcet, B. et al. LXRalpha regulates macrophage arginase 1 through PU.1 and interferon regulatory factor 8. Circ. Res. 109, 492–501 (2011).
留言 (0)