The roles of arginases and arginine in immunity

Caldwell, R. W., Rodriguez, P. C., Toque, H. A., Narayanan, S. P. & Caldwell, R. B. Arginase: a multifaceted enzyme important in health and disease. Physiol. Rev. 98, 641–665 (2018).

Article  CAS  PubMed Central  PubMed  Google Scholar 

Bronte, V. & Zanovello, P. Regulation of immune responses by l-arginine metabolism. Nat. Rev. Immunol. 5, 641–654 (2005).

Article  CAS  PubMed  Google Scholar 

Palte, R. L. et al. Cryo-EM structures of inhibitory antibodies complexed with arginase 1 provide insight into mechanism of action. Commun. Biol. 4, 927 (2021).

Article  CAS  PubMed Central  PubMed  Google Scholar 

Grzywa, T. M. et al. Myeloid cell-derived arginase in cancer immune response. Front. Immunol. 11, 938 (2020).

Article  CAS  PubMed Central  PubMed  Google Scholar 

Geiger, R. et al. l-Arginine modulates T cell metabolism and enhances survival and anti-tumor activity. Cell 167, 829–842.e13 (2016). The first article to show the roles of l-arginine and ARG2 in regulating T cell metabolism and function to enhance T cell survival and the antitumour response by preserving a memory T cell phenotype.

Article  CAS  PubMed Central  PubMed  Google Scholar 

West, E. E. et al. Loss of CD4+ T cell-intrinsic arginase 1 accelerates Th1 response kinetics and reduces lung pathology during influenza infection. Immunity 56, 2036–2053.e12 (2023). This article shows that ARG1 has a CD4+T cell-intrinsic role during antiviral TH1 cell responses in mice and humans, with implications for TH1 cell-associated tissue pathologies.

Article  CAS  PubMed Central  PubMed  Google Scholar 

Palka, J., Oscilowska, I. & Szoka, L. Collagen metabolism as a regulator of proline dehydrogenase/proline oxidase-dependent apoptosis/autophagy. Amino Acids 53, 1917–1925 (2021).

Article  CAS  PubMed Central  PubMed  Google Scholar 

Olivares, O. et al. Collagen-derived proline promotes pancreatic ductal adenocarcinoma cell survival under nutrient limited conditions. Nat. Commun. 8, 16031 (2017).

Article  CAS  PubMed Central  PubMed  Google Scholar 

Kay, E. J., Zanivan, S. & Rufini, A. Proline metabolism shapes the tumor microenvironment: from collagen deposition to immune evasion. Curr. Opin. Biotechnol. 84, 103011 (2023).

Article  CAS  PubMed  Google Scholar 

Madeo, F., Eisenberg, T., Pietrocola, F. & Kroemer, G. Spermidine in health and disease. Science 359, eaan2788 (2018).

Article  Google Scholar 

Husson, A., Brasse-Lagnel, C., Fairand, A., Renouf, S. & Lavoinne, A. Argininosuccinate synthetase from the urea cycle to the citrulline–NO cycle. Eur. J. Biochem. 270, 1887–1899 (2003).

Article  CAS  Google Scholar 

Werner, A. et al. Induced arginine transport via cationic amino acid transporter-1 is necessary for human T-cell proliferation. Eur. J. Immunol. 46, 92–103 (2016).

Article  CAS  Google Scholar 

Yeramian, A. et al. Macrophages require distinct arginine catabolism and transport systems for proliferation and for activation. Eur. J. Immunol. 36, 1516–1526 (2006).

Article  CAS  Google Scholar 

Garcia-Navas, R., Munder, M. & Mollinedo, F. Depletion of l-arginine induces autophagy as a cytoprotective response to endoplasmic reticulum stress in human T lymphocytes. Autophagy 8, 1557–1576 (2012).

Article  CAS  PubMed Central  Google Scholar 

Brunner, J. S. et al. Environmental arginine controls multinuclear giant cell metabolism and formation. Nat. Commun. 11, 431 (2020).

Article  CAS  PubMed Central  Google Scholar 

Werner, A. et al. Reconstitution of T cell proliferation under arginine limitation: activated human T cells take up citrulline via l-type amino acid transporter 1 and use it to regenerate arginine after induction of argininosuccinate synthase expression. Front. Immunol. 8, 864 (2017).

Article  PubMed Central  Google Scholar 

Baydoun, A. R., Bogle, R. G., Pearson, J. D. & Mann, G. E. Discrimination between citrulline and arginine transport in activated murine macrophages: inefficient synthesis of NO from recycling of citrulline to arginine. Br. J. Pharmacol. 112, 487–492 (1994).

Article  CAS  PubMed Central  Google Scholar 

Qualls, J. E. et al. Sustained generation of nitric oxide and control of mycobacterial infection requires argininosuccinate synthase 1. Cell Host Microbe 12, 313–323 (2012).

Article  CAS  PubMed Central  Google Scholar 

Palmer, R. M., Ashton, D. S. & Moncada, S. Vascular endothelial cells synthesize nitric oxide from l-arginine. Nature 333, 664–666 (1988).

Article  CAS  Google Scholar 

Wu, G. & Morris, S. M. Jr. Arginine metabolism: nitric oxide and beyond. Biochem. J. 336, 1–17 (1998).

Article  CAS  PubMed Central  Google Scholar 

Berka, V., Wu, G., Yeh, H. C., Palmer, G. & Tsai, A. L. Three different oxygen-induced radical species in endothelial nitric-oxide synthase oxygenase domain under regulation by l-arginine and tetrahydrobiopterin. J. Biol. Chem. 279, 32243–32251 (2004).

Article  CAS  Google Scholar 

Lee, J., Ryu, H., Ferrante, R. J., Morris, S. M. Jr & Ratan, R. R. Translational control of inducible nitric oxide synthase expression by arginine can explain the arginine paradox. Proc. Natl Acad. Sci. USA 100, 4843–4848 (2003).

Article  CAS  PubMed Central  Google Scholar 

Prabhakar, S. S., Zeballos, G. A., Montoya-Zavala, M. & Leonard, C. Urea inhibits inducible nitric oxide synthase in macrophage cell line. Am. J. Physiol. 273, C1882–C1888 (1997).

Article  CAS  Google Scholar 

Boger, R. H. & Bode-Boger, S. M. Asymmetric dimethylarginine, derangements of the endothelial nitric oxide synthase pathway, and cardiovascular diseases. Semin. Thromb. Hemost. 26, 539–545 (2000).

Article  CAS  Google Scholar 

Momma, T. Y. & Ottaviani, J. I. There is no direct competition between arginase and nitric oxide synthase for the common substrate l-arginine. Nitric Oxide 129, 16–24 (2022).

Article  CAS  Google Scholar 

Kandasamy, P., Gyimesi, G., Kanai, Y. & Hediger, M. A. Amino acid transporters revisited: new views in health and disease. Trends Biochem. Sci. 43, 752–789 (2018).

Article  CAS  Google Scholar 

Closs, E. I., Simon, A., Vekony, N. & Rotmann, A. Plasma membrane transporters for arginine. J. Nutr. 134, 2752S–2759S (2004).

Article  CAS  Google Scholar 

Pi, M., Wu, Y., Lenchik, N. I., Gerling, I. & Quarles, L. D. GPRC6A mediates the effects of l-arginine on insulin secretion in mouse pancreatic islets. Endocrinology 153, 4608–4615 (2012).

Article  CAS  PubMed Central  Google Scholar 

Menjivar, R. E. et al. Arginase 1 is a key driver of immune suppression in pancreatic cancer. eLife 12, e80721 (2023).

Article  CAS  PubMed Central  Google Scholar 

Liao, X. et al. Kruppel-like factor 4 regulates macrophage polarization. J. Clin. Invest. 121, 2736–2749 (2011).

Article  CAS  PubMed Central  Google Scholar 

Gray, M. J., Poljakovic, M., Kepka-Lenhart, D. & Morris, S. M. Jr. Induction of arginase I transcription by IL-4 requires a composite DNA response element for STAT6 and C/EBPβ. Gene 353, 98–106 (2005). This article defines the transcriptional regulation of ARG1 induced by IL-4 and describes how acetylation and deacetylation affect the binding of STAT6 and C/EBPβ to the Arg1 promoter for transcriptional activation.

Article  CAS  Google Scholar 

Ishii, M. et al. Epigenetic regulation of the alternatively activated macrophage phenotype. Blood 114, 3244–3254 (2009).

Article  CAS  PubMed Central  Google Scholar 

Pourcet, B. et al. LXRalpha regulates macrophage arginase 1 through PU.1 and interferon regulatory factor 8. Circ. Res. 109, 492–501 (2011).

留言 (0)

沒有登入
gif