The gut microbiota in thrombosis

Mackman, N. Triggers, targets and treatments for thrombosis. Nature 451, 914–918 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Münzel, T. et al. Heart healthy cities: genetics loads the gun but the environment pulls the trigger. Eur. Heart J. 42, 2422–2438 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Enav, H., Bäckhed, F. & Ley, R. E. The developing infant gut microbiome: a strain-level view. Cell Host Microbe 30, 627–638 (2022).

Article  CAS  PubMed  Google Scholar 

Esser, D. et al. Functions of the microbiota for the physiology of animal metaorganisms. J. Innate Immun. 11, 393–404 (2019).

Article  PubMed  Google Scholar 

Wu, M. et al. Gut complement induced by the microbiota combats pathogens and spares commensals. Cell 187, 897–913.e18 (2024).

Article  CAS  PubMed  Google Scholar 

Motta, J. P. et al. Active thrombin produced by the intestinal epithelium controls mucosal biofilms. Nat. Commun. 10, 3224 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Jäckel, S. et al. Gut microbiota regulate hepatic von Willebrand factor synthesis and arterial thrombus formation via Toll-like receptor-2. Blood 130, 542–553 (2017).

Article  PubMed  Google Scholar 

Sommer, F. & Bäckhed, F. The gut microbiota – masters of host development and physiology. Nat. Rev. Microbiol. 11, 227–238 (2013).

Article  CAS  PubMed  Google Scholar 

Gola, A. et al. Commensal-driven immune zonation of the liver promotes host defence. Nature 589, 131–136 (2021).

Article  CAS  PubMed  Google Scholar 

Formes, H. et al. The gut microbiota instructs the hepatic endothelial cell transcriptome. iScience 24, 103092 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhu, W. et al. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell 165, 111–124 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Witkowski, M. et al. Vascular endothelial tissue factor contributes to trimethylamine N-oxide-enhanced arterial thrombosis. Cardiovasc. Res. 118, 2367–2384 (2022).

Article  CAS  PubMed  Google Scholar 

Carnevale, R. et al. Low-grade endotoxaemia enhances artery thrombus growth via Toll-like receptor 4: implication for myocardial infarction. Eur. Heart J. 41, 3156–3165 (2020).

Article  CAS  PubMed  Google Scholar 

Skye, S. M. et al. Microbial transplantation with human gut commensals containing cutC is sufficient to transmit enhanced platelet reactivity and thrombosis potential. Circ. Res. 123, 1164–1176 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rakoff-Nahoum, S., Paglino, J., Eslami-Varzaneh, F., Edberg, S. & Medzhitov, R. Recognition of commensal microflora by Toll-like receptors is required for intestinal homeostasis. Cell 118, 229–241 (2004).

Article  CAS  PubMed  Google Scholar 

Chang, P. V., Hao, L., Offermanns, S. & Medzhitov, R. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc. Natl Acad. Sci. USA 111, 2247–2252 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nemet, I. et al. A cardiovascular disease-linked gut microbial metabolite acts via adrenergic receptors. Cell 180, 862–877.e22 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nemet, I. et al. Microbe-derived uremic solutes enhance thrombosis potential in the host. mBio 14, e0133123 (2023).

Article  PubMed  Google Scholar 

Gaboriau-Routhiau, V. et al. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity 31, 677–689 (2009).

Article  CAS  PubMed  Google Scholar 

Schaupp, L. et al. Microbiota-induced type I interferons instruct a poised basal state of dendritic cells. Cell 181, 1080–1096.e19 (2020).

Article  CAS  PubMed  Google Scholar 

Reininger, A. J. et al. A 2-step mechanism of arterial thrombus formation induced by human atherosclerotic plaques. J. Am. Coll. Cardiol. 55, 1147–1158 (2010).

Article  CAS  PubMed  Google Scholar 

Oppi, S., Luscher, T. F. & Stein, S. Mouse models for atherosclerosis research – which is my line? Front. Cardiovasc. Med. 6, 46 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang, Z. et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472, 57–63 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kiouptsi, K. et al. The microbiota promotes arterial thrombosis in low-density lipoprotein receptor-deficient mice. mBio 10, e02298-19 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Frost, F. et al. A structured weight loss program increases gut microbiota phylogenetic diversity and reduces levels of Collinsella in obese type 2 diabetics: a pilot study. PLoS ONE 14, e0219489 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Karlsson et al. Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat. Commun. 3, 1245 (2012).

Article  PubMed  Google Scholar 

Jie, Z. et al. The gut microbiome in atherosclerotic cardiovascular disease. Nat. Commun. 8, 845 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Jie, Z. et al. A consortium of three-bacteria isolated from human feces inhibits formation of atherosclerotic deposits and lowers lipid levels in a mouse model. iScience 26, 106960 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ferrell, M. et al. Fecal microbiome composition does not predict diet-induced TMAO production in healthy adults. J. Am. Heart Assoc. 10, e021934 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ott, S. J. et al. Fungal rDNA signatures in coronary atherosclerotic plaques. Env. Microbiol. 9, 3035–3045 (2007).

Article  CAS  Google Scholar 

Koren, O. et al. Human oral, gut, and plaque microbiota in patients with atherosclerosis. Proc. Natl Acad. Sci. USA 108, 4592–4598 (2011).

Article  CAS  PubMed 

留言 (0)

沒有登入
gif