Mackman, N. Triggers, targets and treatments for thrombosis. Nature 451, 914–918 (2008).
Article CAS PubMed PubMed Central Google Scholar
Münzel, T. et al. Heart healthy cities: genetics loads the gun but the environment pulls the trigger. Eur. Heart J. 42, 2422–2438 (2021).
Article PubMed PubMed Central Google Scholar
Enav, H., Bäckhed, F. & Ley, R. E. The developing infant gut microbiome: a strain-level view. Cell Host Microbe 30, 627–638 (2022).
Article CAS PubMed Google Scholar
Esser, D. et al. Functions of the microbiota for the physiology of animal metaorganisms. J. Innate Immun. 11, 393–404 (2019).
Wu, M. et al. Gut complement induced by the microbiota combats pathogens and spares commensals. Cell 187, 897–913.e18 (2024).
Article CAS PubMed Google Scholar
Motta, J. P. et al. Active thrombin produced by the intestinal epithelium controls mucosal biofilms. Nat. Commun. 10, 3224 (2019).
Article PubMed PubMed Central Google Scholar
Jäckel, S. et al. Gut microbiota regulate hepatic von Willebrand factor synthesis and arterial thrombus formation via Toll-like receptor-2. Blood 130, 542–553 (2017).
Sommer, F. & Bäckhed, F. The gut microbiota – masters of host development and physiology. Nat. Rev. Microbiol. 11, 227–238 (2013).
Article CAS PubMed Google Scholar
Gola, A. et al. Commensal-driven immune zonation of the liver promotes host defence. Nature 589, 131–136 (2021).
Article CAS PubMed Google Scholar
Formes, H. et al. The gut microbiota instructs the hepatic endothelial cell transcriptome. iScience 24, 103092 (2021).
Article CAS PubMed PubMed Central Google Scholar
Zhu, W. et al. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell 165, 111–124 (2016).
Article CAS PubMed PubMed Central Google Scholar
Witkowski, M. et al. Vascular endothelial tissue factor contributes to trimethylamine N-oxide-enhanced arterial thrombosis. Cardiovasc. Res. 118, 2367–2384 (2022).
Article CAS PubMed Google Scholar
Carnevale, R. et al. Low-grade endotoxaemia enhances artery thrombus growth via Toll-like receptor 4: implication for myocardial infarction. Eur. Heart J. 41, 3156–3165 (2020).
Article CAS PubMed Google Scholar
Skye, S. M. et al. Microbial transplantation with human gut commensals containing cutC is sufficient to transmit enhanced platelet reactivity and thrombosis potential. Circ. Res. 123, 1164–1176 (2018).
Article CAS PubMed PubMed Central Google Scholar
Rakoff-Nahoum, S., Paglino, J., Eslami-Varzaneh, F., Edberg, S. & Medzhitov, R. Recognition of commensal microflora by Toll-like receptors is required for intestinal homeostasis. Cell 118, 229–241 (2004).
Article CAS PubMed Google Scholar
Chang, P. V., Hao, L., Offermanns, S. & Medzhitov, R. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc. Natl Acad. Sci. USA 111, 2247–2252 (2014).
Article CAS PubMed PubMed Central Google Scholar
Nemet, I. et al. A cardiovascular disease-linked gut microbial metabolite acts via adrenergic receptors. Cell 180, 862–877.e22 (2020).
Article CAS PubMed PubMed Central Google Scholar
Nemet, I. et al. Microbe-derived uremic solutes enhance thrombosis potential in the host. mBio 14, e0133123 (2023).
Gaboriau-Routhiau, V. et al. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity 31, 677–689 (2009).
Article CAS PubMed Google Scholar
Schaupp, L. et al. Microbiota-induced type I interferons instruct a poised basal state of dendritic cells. Cell 181, 1080–1096.e19 (2020).
Article CAS PubMed Google Scholar
Reininger, A. J. et al. A 2-step mechanism of arterial thrombus formation induced by human atherosclerotic plaques. J. Am. Coll. Cardiol. 55, 1147–1158 (2010).
Article CAS PubMed Google Scholar
Oppi, S., Luscher, T. F. & Stein, S. Mouse models for atherosclerosis research – which is my line? Front. Cardiovasc. Med. 6, 46 (2019).
Article CAS PubMed PubMed Central Google Scholar
Wang, Z. et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472, 57–63 (2011).
Article CAS PubMed PubMed Central Google Scholar
Kiouptsi, K. et al. The microbiota promotes arterial thrombosis in low-density lipoprotein receptor-deficient mice. mBio 10, e02298-19 (2019).
Article PubMed PubMed Central Google Scholar
Frost, F. et al. A structured weight loss program increases gut microbiota phylogenetic diversity and reduces levels of Collinsella in obese type 2 diabetics: a pilot study. PLoS ONE 14, e0219489 (2019).
Article CAS PubMed PubMed Central Google Scholar
Karlsson et al. Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat. Commun. 3, 1245 (2012).
Jie, Z. et al. The gut microbiome in atherosclerotic cardiovascular disease. Nat. Commun. 8, 845 (2017).
Article PubMed PubMed Central Google Scholar
Jie, Z. et al. A consortium of three-bacteria isolated from human feces inhibits formation of atherosclerotic deposits and lowers lipid levels in a mouse model. iScience 26, 106960 (2023).
Article CAS PubMed PubMed Central Google Scholar
Ferrell, M. et al. Fecal microbiome composition does not predict diet-induced TMAO production in healthy adults. J. Am. Heart Assoc. 10, e021934 (2021).
Article CAS PubMed PubMed Central Google Scholar
Ott, S. J. et al. Fungal rDNA signatures in coronary atherosclerotic plaques. Env. Microbiol. 9, 3035–3045 (2007).
Koren, O. et al. Human oral, gut, and plaque microbiota in patients with atherosclerosis. Proc. Natl Acad. Sci. USA 108, 4592–4598 (2011).
留言 (0)