The renaissance of oral tolerance: merging tradition and new insights

Pabst, O. & Mowat, A. M. Oral tolerance to food protein. Mucosal Immunol. 5, 232–239 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rezende, R. M. & Weiner, H. L. Oral tolerance: an updated review. Immunol. Lett. 245, 29–37 (2022).

Article  CAS  PubMed  Google Scholar 

Mowat, A. M. Basic mechanisms and clinical implications of oral tolerance. Curr. Opin. Gastroenterol. 15, 546–556 (1999).

Article  CAS  PubMed  Google Scholar 

Faria, A. M. & Weiner, H. L. Oral tolerance. Immunol. Rev. 206, 232–259 (2005).

Article  CAS  PubMed  Google Scholar 

Faria, A. M. & Weiner, H. L. Oral tolerance: mechanisms and therapeutic applications. Adv. Immunol. 73, 153–264 (1999).

Article  CAS  PubMed  Google Scholar 

Roberts, G. et al. Defining the window of opportunity and target populations to prevent peanut allergy. J. Allergy Clin. Immunol. 151, 1329–1336 (2022).

Article  PubMed  Google Scholar 

Torow, N. et al. M cell maturation and cDC activation determine the onset of adaptive immune priming in the neonatal Peyer’s patch. Immunity 56, 1220–1238.e7 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vaarala, O., Saukkonen, T., Savilahti, E., Klemola, T. & Akerblom, H. K. Development of immune response to cow’s milk proteins in infants receiving cow’s milk or hydrolyzed formula. J. Allergy Clin. Immunol. 96, 917–923 (1995).

Article  CAS  PubMed  Google Scholar 

Chambers, S. J. et al. Adoptive transfer of dendritic cells from allergic mice induces specific immunoglobulin E antibody in naïve recipients in absence of antigen challenge without altering the T helper 1/T helper 2 balance. Immunology 112, 72–79 (2004).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shen, L., Weber, C. R. & Turner, J. R. The tight junction protein complex undergoes rapid and continuous molecular remodeling at steady state. J. Cell Biol. 181, 683–695 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shashikanth, N. et al. Tight junction channel regulation by interclaudin interference. Nat. Commun. 13, 3780 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lin, X. P., Almqvist, N. & Telemo, E. Human small intestinal epithelial cells constitutively express the key elements for antigen processing and the production of exosomes. Blood Cell Mol. Dis. 35, 122–128 (2005).

Article  CAS  Google Scholar 

Karlsson, M. et al. “Tolerosomes” are produced by intestinal epithelial cells. Eur. J. Immunol. 31, 2892–2900 (2001).

Article  CAS  PubMed  Google Scholar 

Ostman, S., Taube, M. & Telemo, E. Tolerosome-induced oral tolerance is MHC dependent. Immunology 116, 464–476 (2005).

Article  PubMed  PubMed Central  Google Scholar 

Van Niel, G. et al. Intestinal epithelial exosomes carry MHC class II/peptides able to inform the immune system in mice. Gut 52, 1690–1697 (2003).

Article  PubMed  PubMed Central  Google Scholar 

Knoop, K. A., McDonald, K. G., McCrate, S., McDole, J. R. & Newberry, R. D. Microbial sensing by goblet cells controls immune surveillance of luminal antigens in the colon. Mucosal Immunol. 8, 198–210 (2015).

Article  CAS  PubMed  Google Scholar 

Gustafsson, J. K. et al. Intestinal goblet cells sample and deliver lumenal antigens by regulated endocytic uptake and transcytosis. eLife 10, e67292 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kulkarni, D. H. et al. Goblet cell associated antigen passages support the induction and maintenance of oral tolerance. Mucosal Immunol. 13, 271–282 (2020). This review covers the initial studies that indicate goblet cell-associated passages may have an important role in the uptake of antigen from the intestine and in oral tolerance.

Article  CAS  PubMed  Google Scholar 

Knoop, K. A. et al. Microbial antigen encounter during a preweaning interval is critical for tolerance to gut bacteria. Sci. Immunol. 2, eaao1314 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Knoop, K. A. et al. Maternal activation of the EGFR prevents translocation of gut-residing pathogenic Escherichia coli in a model of late-onset neonatal sepsis. Proc. Natl Acad. Sci. USA 117, 7941–7949 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kulkarni, D. H. et al. Goblet cell associated antigen passages are inhibited during Salmonella typhimurium infection to prevent pathogen dissemination and limit responses to dietary antigens. Mucosal Immunol. 11, 1103–1113 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Noah, T. K. et al. IL-13-induced intestinal secretory epithelial cell antigen passages are required for IgE-mediated food-induced anaphylaxis. J. Allergy Clin. Immunol. 144, 1058–1073.e3 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Suzuki, H. et al. Ovalbumin-protein sigma 1 M-cell targeting facilitates oral tolerance with reduction of antigen-specific CD4+ T cells. Gastroenterology 135, 917–925 (2008).

Article  PubMed  Google Scholar 

Jang, M. H. et al. Intestinal villous M cells: an antigen entry site in the mucosal epithelium. Proc. Natl Acad. Sci. USA 101, 6110–6115 (2004).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rescigno, M. et al. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat. Immunol. 2, 361–367 (2001).

Article  CAS  PubMed  Google Scholar 

Niess, J. H. et al. CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science 307, 254–258 (2005).

Article  CAS  PubMed  Google Scholar 

Farache, J. et al. Luminal bacteria recruit CD103+ dendritic cells into the intestinal epithelium to sample bacterial antigens for presentation. Immunity 38, 581–595 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chieppa, M., Rescigno, M., Huang, A. Y. & Germain, R. N. Dynamic imaging of dendritic cell extension into the small bowel lumen in response to epithelial cell TLR engagement. J. Exp. Med. 203, 2841–2852 (2006).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mazzini, E., Massimiliano, L., Penna, G. & Rescigno, M. Oral tolerance can be established via gap junction transfer of fed antigens from CX3CR1+ macrophages to CD103+ dendritic cells. Immunity 40, 248–261 (2014).

Article  CAS  PubMed  Google Scholar 

Liu, Q. et al. Pyruvate enhances oral tolerance via GPR31. Int. Immunol. 34, 343–352 (2022).

Article 

留言 (0)

沒有登入
gif