Pathophysiological insights into HFpEF from studies of human cardiac tissue

Savarese, G. et al. Global burden of heart failure: a comprehensive and updated review of epidemiology. Cardiovasc Res. 118, 3272–3287 (2022).

Article  CAS  Google Scholar 

Borlaug, B. A., Sharma, K., Shah, S. J. & Ho, J. E. Heart failure with preserved ejection fraction: JACC scientific statement. J. Am. Coll. Cardiol. 81, 1810–1834 (2023).

Article  PubMed  Google Scholar 

Dunlay, S. M., Roger, V. L. & Redfield, M. M. Epidemiology of heart failure with preserved ejection fraction. Nat. Rev. Cardiol. 14, 591–602 (2017).

Article  PubMed  Google Scholar 

Redfield, M. M. & Borlaug, B. A. Heart failure with preserved ejection fraction: a review. JAMA 329, 827–838 (2023).

Article  PubMed  Google Scholar 

Desai, A. S., Lam, C. S. P., McMurray, J. J. V. & Redfield, M. M. How to manage heart failure with preserved ejection fraction: practical guidance for clinicians. JACC Heart Fail. 11, 619–636 (2023).

Article  PubMed  Google Scholar 

Barnett, K. et al. Epidemiology of multimorbidity and implications for health care, research, and medical education: a cross-sectional study. Lancet 380, 37–43 (2012).

Article  PubMed  Google Scholar 

Kumanyika, S. & Dietz, W. H. Solving population-wide obesity – progress and future prospects. N. Engl. J. Med. 383, 2197–2200 (2020).

Article  PubMed  Google Scholar 

Mossadeghi, B. et al. Multimorbidity and social determinants of health in the US prior to the COVID-19 pandemic and implications for health outcomes: a cross-sectional analysis based on NHANES 2017-2018. BMC Public. Health 23, 887 (2023).

Article  PubMed  PubMed Central  Google Scholar 

Chamberlain, A. M. et al. Multimorbidity in heart failure: a community perspective. Am. J. Med. 128, 38–45 (2015).

Article  PubMed  Google Scholar 

Teramoto, K. et al. Epidemiology and clinical features of heart failure with preserved ejection fraction. Card. Fail. Rev. 8, e27 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Borlaug, B. A. et al. Obesity and heart failure with preserved ejection fraction: new insights and pathophysiologic targets. Cardiovasc. Res. 118, 3434–3450 (2022).

Article  CAS  PubMed Central  Google Scholar 

Campbell, R. T. et al. What have we learned about patients with heart failure and preserved ejection fraction from DIG-PEF, CHARM-preserved, and I-PRESERVE? J. Am. Coll. Cardiol. 60, 2349–2356 (2012).

Article  PubMed  Google Scholar 

Mohammed, S. F. et al. Comorbidity and ventricular and vascular structure and function in heart failure with preserved ejection fraction: a community-based study. Circ. Heart Fail. 5, 710–719 (2012).

Article  PubMed  PubMed Central  Google Scholar 

Paulus, W. J. & Tschope, C. A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J. Am. Coll. Cardiol. 62, 263–271 (2013).

Article  PubMed  Google Scholar 

Joseph, J. et al. Genetic architecture of heart failure with preserved versus reduced ejection fraction. Nat. Commun. 13, 7753 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bozkurt, B. et al. Universal definition and classification of heart failure: a Report of the Heart Failure Society of America, Heart Failure Association of the European Society of Cardiology, Japanese Heart Failure Society and Writing Committee of the Universal Definition of Heart Failure. J. Card. Fail. 23, 352–380 (2021).

Google Scholar 

Charles, C. J., Rademaker, M. T., Scott, N. J. A. & Richards, A. M. Large animal models of heart failure: reduced vs. preserved ejection fraction. Animals 10, 1906 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Smith, A. N. et al. Genomic, proteomic, and metabolic comparisons of small animal models of heart failure with preserved ejection fraction: a tale of mice, rats, and cats. J. Am. Heart Assoc. 11, e026071 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shapiro, B. P. et al. Mineralocorticoid signaling in transition to heart failure with normal ejection fraction. Hypertension 51, 289–295 (2008).

Article  CAS  PubMed  Google Scholar 

Schiattarella, G. G. et al. Nitrosative stress drives heart failure with preserved ejection fraction. Nature 568, 351–356 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Conceicao, G., Heinonen, I., Lourenco, A. P., Duncker, D. J. & Falcao-Pires, I. Animal models of heart failure with preserved ejection fraction. Neth. Heart J. 24, 275–286 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Valero-Munoz, M., Backman, W. & Sam, F. Murine models of heart failure with preserved ejection fraction: a “fishing expedition”. JACC Basic. Transl. Sci. 2, 770–789 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Lerman, L. O. et al. Animal models of hypertension: a scientific statement from the American Heart Association. Hypertension 73, e87–e120 (2019).

Article  CAS  PubMed  Google Scholar 

Tong, D. et al. Female sex is protective in a preclinical model of heart failure with preserved ejection fraction. Circulation 140, 1769–1771 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Du, X. J. Gender modulates cardiac phenotype development in genetically modified mice. Cardiovasc. Res. 63, 510–519 (2004).

Article  CAS  PubMed  Google Scholar 

Selvaraj, S. et al. Systolic blood pressure in heart failure with preserved ejection fraction treated with sacubitril/valsartan. J. Am. Coll. Cardiol. 75, 1644–1656 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hackam, D. G. & Redelmeier, D. A. Translation of research evidence from animals to humans. JAMA 296, 1731–1732 (2006).

Article  CAS  PubMed  Google Scholar 

Vyas, M. V., Gros, R. & Hackam, D. G. Translation of cardiovascular animal models to human randomized trials. Am. J. Cardiol. 137, 141 (2020).

Article  PubMed  Google Scholar 

McGonigle, P. & Ruggeri, B. Animal models of human disease: challenges in enabling translation. Biochem. Pharmacol. 87, 162–171 (2014).

Article  CAS  PubMed  Google Scholar 

Bishu, K. et al. Sildenafil and B-type natriuretic peptide acutely phosphorylate titin and improve diastolic distensibility in vivo. Circulation 124, 2882–2891 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Takimoto, E. et al. Chronic inhibition of cyclic GMP phosphodiesterase 5A prevents and reverses cardiac hypertrophy. Nat. Med. 11, 214–222 (2005).

Article  CAS  PubMed  Google Scholar 

Bermejo, J. et al. Sildenafil for improving outcomes in patients with corrected valvular heart disease and persistent pulmonary hypertension: a multicenter, double-blind, randomized clinical trial. Eur. Heart J. 39, 1255–1264 (2018).

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif