Structural basis for lipid transfer by the ATG2A–ATG9A complex

Levine, B. & Kroemer, G. Autophagy in the pathogenesis of disease. Cell 132, 27–42 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rashid, H. O. et al. ER stress: autophagy induction, inhibition and selection. Autophagy 11, 1956–1977 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mizushima, N., Yoshimori, T. & Ohsumi, Y. The role of Atg proteins in autophagosome formation. Annu. Rev. Cell Dev. Biol. 27, 107–132 (2011).

Article  CAS  PubMed  Google Scholar 

Chowdhury, S. et al. Insights into autophagosome biogenesis from structural and biochemical analyses of the ATG2A–WIPI4 complex. Proc. Natl Acad. Sci. USA 115, E9792–E9801 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Osawa, T. et al. Atg2 mediates direct lipid transfer between membranes for autophagosome formation. Nat. Struct. Mol. Biol. 26, 281–288 (2019).

Article  CAS  PubMed  Google Scholar 

Valverde, D. P. et al. ATG2 transports lipids to promote autophagosome biogenesis. J. Cell Biol. 218, 1787–1798 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bozic, M. et al. A conserved ATG2–GABARAP family interaction is critical for phagophore formation. EMBO Rep. 21, e48412 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kotani, T. et al. The Atg2–Atg18 complex tethers pre-autophagosomal membranes to the endoplasmic reticulum for autophagosome formation. Proc. Natl Acad. Sci. USA 115, 10363–10368 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Otomo, T., Chowdhury, S. & Lander, G. C.The rod-shaped ATG2A–WIPI4 complex tethers membranes in vitro. Contact (Thousand Oaks) https://doi.org/10.1177/2515256418819936 (2018).

Article  PubMed  Google Scholar 

Gomez-Sanchez, R. et al. Atg9 establishes Atg2-dependent contact sites between the endoplasmic reticulum and phagophores. J. Cell Biol. 217, 2743–2763 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tamura, N. et al. Differential requirement for ATG2A domains for localization to autophagic membranes and lipid droplets. FEBS Lett. 591, 3819–3830 (2017).

Article  CAS  PubMed  Google Scholar 

Maeda, S., Otomo, C. & Otomo, T. The autophagic membrane tether ATG2A transfers lipids between membranes. eLife 8, e45777 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Proikas-Cezanne, T. et al. WIPI proteins: essential PtdIns3P effectors at the nascent autophagosome. J. Cell Sci. 128, 207–217 (2015).

CAS  PubMed  Google Scholar 

Guardia, C. M. et al. Structure of human ATG9A, the only transmembrane protein of the core autophagy machinery. Cell Rep. 31, 107837 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Maeda, S. et al. Structure, lipid scrambling activity and role in autophagosome formation of ATG9A. Nat. Struct. Mol. Biol. 27, 1194–U246 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Matoba, K. et al. Atg9 is a lipid scramblase that mediates autophagosomal membrane expansion. Nat. Struct. Mol. Biol. 27, 1185–U224 (2020).

Article  CAS  PubMed  Google Scholar 

Sawa-Makarska, J. et al. Reconstitution of autophagosome nucleation defines Atg9 vesicles as seeds for membrane formation. Science 369, eaaz7714 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Olivas, T. J. et al. ATG9 vesicles comprise the seed membrane of mammalian autophagosomes. J. Cell Biol. 222, e202208088 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bieber, A. et al. In situ structural analysis reveals membrane shape transitions during autophagosome formation. Proc. Natl Acad. Sci. USA 119, e2209823119 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Orsi, A. et al. Dynamic and transient interactions of Atg9 with autophagosomes, but not membrane integration, are required for autophagy. Mol. Biol. Cell 23, 1860–1873 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yamamoto, H. et al. Atg9 vesicles are an important membrane source during early steps of autophagosome formation. J. Cell Biol. 198, 219–233 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Puri, C. et al. Diverse autophagosome membrane sources coalesce in recycling endosomes. Cell 154, 1285–1299 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ghanbarpour, A. et al. A model for a partnership of lipid transfer proteins and scramblases in membrane expansion and organelle biogenesis. Proc. Natl Acad. Sci. USA 118, e2101562118 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gotze, M. et al. A simple cross-linking/mass spectrometry workflow for studying system-wide protein interactions. Anal. Chem. 91, 10236–10244 (2019).

Article  PubMed  Google Scholar 

Dziurdzik, S. K. & Conibear, E. The Vps13 family of lipid transporters and its role at membrane contact sites. Int. J. Mol. Sci. 22, 2905 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhu, L. et al. TAPS: a traveling-salesman based automated path searching method for functional conformational changes of biological macromolecules. J. Chem. Phys. 150, 124105 (2019).

Article  PubMed  Google Scholar 

Xi, K. & Zhu, L. Automated path searching reveals the mechanism of hydrolysis enhancement by T4 lysozyme mutants. Int. J. Mol. Sci. 23, 14628 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang, L. et al. DNA deformation exerted by regulatory DNA-binding motifs in human alkyladenine DNA glycosylase promotes base flipping. J. Chem. Inf. Model. 62, 3213–3226 (2022).

Article  PubMed  Google Scholar 

Xi, K. et al. Assessing the performance of traveling-salesman based automated path searching (TAPS) on complex biomolecular systems. J. Chem. Theory Comput. 17, 5301–5311 (2021).

Article  CAS  PubMed  Google Scholar 

Torrie, G. M. & Valleau, J. P. Nonphysical sampling distributions in Monte Carlo free-energy estimation: umbrella sampling. J. Comput. Phys. 23, 187–199 (1977).

Article 

留言 (0)

沒有登入
gif