Structural plasticity of bacterial ESCRT-III protein PspA in higher-order assemblies

Schmidt, O. & Teis, D. The ESCRT machinery. Curr. Biol. 22, R116–R120 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vietri, M. et al. Spastin and ESCRT-III coordinate mitotic spindle disassembly and nuclear envelope sealing. Nature 522, 231–235 (2015).

Article  CAS  PubMed  Google Scholar 

Zhu, L., Jorgensen, J. R., Li, M., Chuang, Y.-S. & Emr, S. D. ESCRTs function directly on the lysosome membrane to downregulate ubiquitinated lysosomal membrane proteins. eLife 6, e26403 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Huber, S. T., Mostafavi, S., Mortensen, S. A. & Sachse, C. Structure and assembly of ESCRT-III helical Vps24 filaments. Sci. Adv. 6, eaba4897 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

McCullough, J. et al. Structure and membrane remodeling activity of ESCRT-III helical polymers. Science 350, 1548–1551 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pfitzner, A.-K., von Filseck, J. M. & Roux, A. Principles of membrane remodeling by dynamic ESCRT-III polymers. Trends Cell Biol. 31, 856–868 (2021).

Article  CAS  PubMed  Google Scholar 

Pfitzner, A.-K. et al. An ESCRT-III polymerization sequence drives membrane deformation and fission. Cell 182, 1140–1155.e18 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gupta, T. K. et al. Structural basis for VIPP1 oligomerization and maintenance of thylakoid membrane integrity. Cell 184, 3643–3659.e23 (2021).

Article  CAS  PubMed  Google Scholar 

Junglas, B. et al. PspA adopts an ESCRT-III-like fold and remodels bacterial membranes. Cell 184, 3674–3688.e18 (2021).

Article  CAS  PubMed  Google Scholar 

Liu, J. et al. Bacterial Vipp1 and PspA are members of the ancient ESCRT-III membrane-remodeling superfamily. Cell 184, 3660–3673.e18 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Di Giulio, M. The phylogenetic distribution of the cell division system would not imply a cellular LUCA but a progenotic LUCA. Biosystems 210, 104563 (2021).

Article  PubMed  Google Scholar 

Kleerebezem, M. & Tommassen, J. Expression of the pspA gene stimulates efficient protein export in Escherichia coli. Mol. Microbiol. 7, 947–956 (1993).

Article  CAS  PubMed  Google Scholar 

Kobayashi, R., Suzuki, T. & Yoshida, M. Escherichia coli phage-shock protein A (PspA) binds to membrane phospholipids and repairs proton leakage of the damaged membranes. Mol. Microbiol. 66, 100–109 (2007).

Article  CAS  PubMed  Google Scholar 

Hankamer, B. D., Elderkin, S. L., Buck, M. & Nield, J. Organization of the AAA+ adaptor protein PspA is an oligomeric ring. J. Biol. Chem. 279, 8862–8866 (2004).

Article  CAS  PubMed  Google Scholar 

Jovanovic, G. et al. The N-terminal amphipathic helices determine regulatory and effector functions of phage shock protein A (PspA) in Escherichia coli. J. Mol. Biol. 426, 1498–1511 (2014).

Article  CAS  PubMed  Google Scholar 

Joly, N. et al. Managing membrane stress: the phage shock protein (Psp) response, from molecular mechanisms to physiology. FEMS Microbiol. Rev. 34, 797–827 (2010).

Article  CAS  PubMed  Google Scholar 

Manganelli, R. & Gennaro, M. L. Protecting from envelope stress: variations on the phage-shock-protein theme. Trends Microbiol. 25, 205–216 (2017).

Article  CAS  PubMed  Google Scholar 

Hennig, R. et al. IM30 triggers membrane fusion in cyanobacteria and chloroplasts. Nat. Commun. 6, 7018 (2015).

Article  CAS  PubMed  Google Scholar 

Junglas, B. et al. IM30 IDPs form a membrane-protective carpet upon super-complex disassembly. Commun. Biol. 3, 595 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Siebenaller, C., Junglas, B. & Schneider, D. Functional Implications of multiple IM30 oligomeric states. Front. Plant Sci. 10, 1500 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Male, A. L., Oyston, P. C. F. & Tavassoli, A. Self-assembly of Escherichia coli phage shock protein A. Adv. Microbiol. 4, 353–359 (2014).

Article  CAS  Google Scholar 

Theis, J. et al. VIPP1 rods engulf membranes containing phosphatidylinositol phosphates. Sci. Rep. 9, 8725 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Azad, K. et al. Structural basis of CHMP2A–CHMP3 ESCRT-III polymer assembly and membrane cleavage. Nat. Struct. Mol. Biol. 30, 81–90 (2023).

Article  CAS  PubMed  Google Scholar 

Nguyen, H. C. et al. Membrane constriction and thinning by sequential ESCRT-III polymerization. Nat. Struct. Mol. Biol. 27, 392–399 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Junglas, B., Siebenaller, C., Schlösser, L., Hellmann, N. & Schneider, D. GTP hydrolysis by Synechocystis IM30 does not decisively affect its membrane remodeling activity. Sci. Rep. 10, 9793 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ohnishi, N., Zhang, L. & Sakamoto, W. VIPP1 involved in chloroplast membrane integrity has GTPase activity in vitro. Plant Physiol. 177, 328–338 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Siebenaller, C. et al. Binding and/or hydrolysis of purine-based nucleotides is not required for IM30 ring formation. FEBS Lett. 595, 1876–1885 (2021).

Article  CAS  PubMed  Google Scholar 

Lacabanne, D. et al. ATP analogues for structural investigations: case studies of a DnaB helicase and an ABC transporter. Molecules 25, 5268 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Krasteva, M. & Barth, A. Structures of the Ca2+-ATPase complexes with ATP, AMPPCP and AMPPNP. An FTIR study. Biochim. Biophys. Acta 1767, 114–123 (2007).

Article  CAS  PubMed  Google Scholar 

Doo Song, B., Leonard, M. & Schmid, S. L. Dynamin GTPase domain mutants that differentially affect GTP binding, GTP hydrolysis, and clathrin-mediated endocytosis. J. Biol. Chem. 279, 40431–40436 (2004).

Article  Google Scholar 

Mierzwa, B. E. et al. Dynamic subunit turnover in ESCRT-III assemblies is regulated by Vps4 to mediate membrane remodelling during cytokinesis. Nat. Cell Biol. 19, 787–798 (2017).

Article  CAS 

留言 (0)

沒有登入
gif