Topoisomerase-modulated genome-wide DNA supercoiling domains colocalize with nuclear compartments and regulate human gene expression

Li, S., Vemuri, C. & Chen, C. DNA topology: a central dynamic coordinator in chromatin regulation. Curr. Opin. Struct. Biol. 87, 102868 (2024).

Article  CAS  PubMed  Google Scholar 

Jha, R. K., Levens, D. & Kouzine, F. Mechanical determinants of chromatin topology and gene expression. Nucleus 13, 94–115 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim, E., Gonzalez, A. M., Pradhan, B., van der Torre, J. & Dekker, C. Condensin-driven loop extrusion on supercoiled DNA. Nat. Struct. Mol. Biol. 29, 719–727 (2022).

Article  CAS  PubMed  Google Scholar 

Teves, S. S. & Henikoff, S. Transcription-generated torsional stress destabilizes nucleosomes. Nat. Struct. Mol. Biol. 21, 88–94 (2014).

Article  CAS  PubMed  Google Scholar 

Sheinin, M. Y., Li, M., Soltani, M., Luger, K. & Wang, M. D. Torque modulates nucleosome stability and facilitates H2A/H2B dimer loss. Nat. Commun. 4, 2579 (2013).

Article  PubMed  Google Scholar 

Finzi, L. & Dunlap, D. Supercoiling biases the formation of loops involved in gene regulation. Biophys. Rev. 8, 65–74 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chedin, F. & Benham, C. J. Emerging roles for R-loop structures in the management of topological stress. J. Biol. Chem. 295, 4684–4695 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu, Y., Bondarenko, V., Ninfa, A. & Studitsky, V. M. DNA supercoiling allows enhancer action over a large distance. Proc. Natl Acad. Sci. USA 98, 14883–14888 (2001).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ma, J., Bai, L. & Wang, M. D. Transcription under torsion. Science 340, 1580–1583 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chong, S., Chen, C., Ge, H. & Xie, X. S. Mechanism of transcriptional bursting in bacteria. Cell 158, 314–326 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Patel, H. P. et al. DNA supercoiling restricts the transcriptional bursting of neighboring eukaryotic genes. Mol. Cell 83, 1573–1587 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim, S., Beltran, B., Irnov, I. & Jacobs-Wagner, C. Long-distance cooperative and antagonistic RNA polymerase dynamics via DNA supercoiling. Cell 179, 106–119 (2019).

Article  CAS  PubMed  Google Scholar 

Kouzine, F., Sanford, S., Elisha-Feil, Z. & Levens, D. The functional response of upstream DNA to dynamic supercoiling in vivo. Nat. Struct. Mol. Biol. 15, 146–154 (2008).

Article  CAS  PubMed  Google Scholar 

Zhi, X. et al. Transient and dynamic DNA supercoiling potently stimulates the leu-500 promoter in Escherichia coli. J. Biol. Chem. 292, 14566–14575 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Joshi, R. S., Nikolaou, C. & Roca, J. Structure and chromosomal organization of yeast genes regulated by topoisomerase II. Int. J. Mol. Sci. 19, 134 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Peter, B. J. et al. Genomic transcriptional response to loss of chromosomal supercoiling in Escherichia coli. Genome Biol. 5, R87 (2004).

Article  PubMed  PubMed Central  Google Scholar 

Bordes, P. et al. DNA supercoiling contributes to disconnect σS accumulation from σS-dependent transcription in Escherichia coli. Mol. Microbiol. 48, 561–571 (2003).

Article  CAS  PubMed  Google Scholar 

Picker, M. A. et al. Localized modulation of DNA supercoiling, triggered by the Shigella anti-silencer VirB, is sufficient to relieve H-NS-mediated silencing. Nucleic Acids Res. 51, 3679–3695 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vijayan, V., Zuzow, R. & O’Shea, E. K. Oscillations in supercoiling drive circadian gene expression in cyanobacteria. Proc. Natl Acad. Sci. USA 106, 22564–22568 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pommier, Y., Nussenzweig, A., Takeda, S. & Austin, C. Human topoisomerases and their roles in genome stability and organization. Nat. Rev. Mol. Cell Biol. 23, 407–427 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Durand-Dubief, M., Persson, J., Norman, U., Hartsuiker, E. & Ekwall, K. Topoisomerase I regulates open chromatin and controls gene expression in vivo. EMBO J. 29, 2126–2134 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Miller, E. L. et al. TOP2 synergizes with BAF chromatin remodeling for both resolution and formation of facultative heterochromatin. Nat. Struct. Mol. Biol. 24, 344–352 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rialdi, A. et al. Topoisomerase 1 inhibition suppresses inflammatory genes and protects from death by inflammation. Science 352, aad7993 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Amatullah, H. et al. Epigenetic reader SP140 loss of function drives Crohn’s disease due to uncontrolled macrophage topoisomerases. Cell 185, 3232–3247 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Austin, C. A., Cowell, I. G., Khazeem, M. M., Lok, D. & Ng, H. T. TOP2B’s contributions to transcription. Biochem. Soc. Trans. 49, 2483–2493 (2021).

Article  CAS  PubMed  Google Scholar 

Pedersen, J. M. et al. DNA topoisomerases maintain promoters in a state competent for transcriptional activation in Saccharomyces cerevisiae. PLoS Genet. 8, e1003128 (2012).

Article  PubMed  PubMed Central  Google Scholar 

Roedgaard, M., Fredsoe, J., Pedersen, J. M., Bjergbaek, L. & Andersen, A. H. DNA topoisomerases are required for preinitiation complex assembly during GAL gene activation. PLoS ONE 10, e0132739 (2015).

Article  PubMed  PubMed Central  Google Scholar 

Morao, A. K., Kim, J., Obaji, D., Sun, S. & Ercan, S. Topoisomerases I and II facilitate condensin DC translocation to organize and repress X chromosomes in C. elegans. Mol. Cell 82, 4202–4217 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Papapietro, O. & Nejentsev, S. Topoisomerase 2β and DNA topology during B cell development. Front. Immunol. 13, 982870 (2022).

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif