Exploration of potential antihypertensive peptides derived from farmed Chinese giant salamander (Andrias davidianus)

Ali I, Wani WA, Haque A, Saleem K. Glutamic Acid and Its Derivatives: Candidates for Rational Design of Anticancer Drugs. Future Med Chem. 2013;5:961–78. https://doi.org/10.4155/fmc.13.62

Article  CAS  PubMed  Google Scholar 

Hui L. Assessment of the role of ageing and non-ageing factors in death from non-communicable diseases based on a cumulative frequency model. Sci Rep. 2017;7:8159. https://doi.org/10.1038/s41598-017-08539-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

World Health Organization (WHO). Noncommunicable diseases country profiles 2018. 2018. https://www.who.int/publications/i/item/9789241514620

Rarau P, Guo S, Baptista SN, Pulford J, McPake B, Oldenburg B. Prevalence of non-communicable diseases and their risk factors in Papua New Guinea: A systematic review. SAGE Open Med. 2020;8:2050312120973842. https://doi.org/10.1177/2050312120973842

Article  PubMed  PubMed Central  Google Scholar 

Ali I, Wani WA, Saleem K, Hsieh M-F. Anticancer metallodrugs of glutamic acid sulphonamides: in silico, DNA binding, hemolysis and anticancer studies. RSC Adv. 2014;4:29629–41. https://doi.org/10.1039/C4RA02570A

Article  CAS  Google Scholar 

Zhou B, Carrillo-Larco RM, Danaei G, Riley LM, Paciorek CJ, Stevens GA, et al. Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: a pooled analysis of 1201 population-representative studies with 104 million participants. The Lancet. 2021;398:957–80. https://doi.org/10.1016/S0140-6736(21)01330-1

Article  Google Scholar 

Murray CJL, Aravkin AY, Zheng P, Abbafati C, Abbas KM, Abbasi-Kangevari M, et al. Global burden of 87 risk factors in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. The Lancet. 2020;396:1223–49. https://doi.org/10.1016/S0140-6736(20)30752-2

Article  Google Scholar 

Chaturvedi A, Zhu A, Gadela NV, Prabhakaran D, Jafar TH. Social Determinants of Health and Disparities in Hypertension and Cardiovascular Diseases. Hypertension. 2024;81:387–99. https://doi.org/10.1161/HYPERTENSIONAHA.123.21354

Article  CAS  PubMed  Google Scholar 

Havelka J, Boerlin H, Studer A, Greminger P, Tenschert W, Luescher T, et al. Long-term experience with captopril in severe hypertension. Br J Clin Pharmacol. 1982;14:71S–6S. https://doi.org/10.1111/j.1365-2125.1982.tb02060.x

Article  PubMed  PubMed Central  Google Scholar 

Onuh JO, Selvamuthukumaran M, Pathak YV. Bioactive Peptides: Production, Bioavailability, Health Potential, and Regulatory Issues. 1st ed. Boca Raton: CRC Press; 2021 https://doi.org/10.1201/9781003052777

Chan P-T, Matanjun P, Budiman C, Shapawi R, Lee J-S. Novel Peptide Sequences with ACE-Inhibitory and Antioxidant Activities Derived from the Heads and Bones of Hybrid Groupers (Epinephelus lanceolatus × Epinephelus fuscoguttatus). Foods. 2022;11:3991. https://doi.org/10.3390/foods11243991

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fujita H, Yamagami T, Ohshima K. Effects of an ace-inhibitory agent, katsuobushi oligopeptide, in the spontaneously hypertensive rat and in borderline and mildly hypertensive subjects. Nutr Res. 2001;21:1149–58. https://doi.org/10.1016/S0271-5317(01)00333-5

Article  CAS  Google Scholar 

Shu G, Liu P, Zhao T, Li C, Hou Y, Zhao C, et al. Disordered Translocation is Hastening Local Extinction of the Chinese Giant Salamander. Asian Herpetol Res. 2021;12:271–9,9A-9C. https://doi.org/10.16373/j.cnki.ahr.200080

Article  Google Scholar 

Meng Y, Ma J, Jiang N, Zeng L-B, Xiao H-B. Pathological and microbiological findings from mortality of the Chinese giant salamander (Andrias davidianus). Arch Virol. 2014;159:1403–12. https://doi.org/10.1007/s00705-013-1962-6

Article  CAS  PubMed  Google Scholar 

He D, Zhu W, Zeng W, Lin J, Ji Y, Wang Y, et al. Nutritional and medicinal characteristics of Chinese giant salamander (Andrias davidianus) for applications in healthcare industry by artificial cultivation: A review. Food Sci Hum Wellness. 2018;7:1–10. https://doi.org/10.1016/j.fshw.2018.03.001

Article  Google Scholar 

Suleman DP, Sutopo CCY, Hsu J-L. Characterization of novel angiotensin-I converting enzyme inhibitory peptides derived from Taiwan red quinoa (Chenopodium formosanum Koidz.) seed proteins using two sequential bioassay-guided fractionations. Med Chem Res. 2024;33:107–16. https://doi.org/10.1007/s00044-023-03167-y

Article  CAS  Google Scholar 

Wang Y, Tang H, Deng X, Shen Y, Tang M, Wang F. Screening and Constructing of Novel Angiotensin I-Converting Enzyme Inhibiting Peptides from Walnut Protein Isolate and Their Mechanisms of Action: A Merged In Silico and In Vitro Study. Plant Foods Hum Nutr. 2024;79:48–58. https://doi.org/10.1007/s11130-023-01122-1

Article  CAS  PubMed  Google Scholar 

Cao J, Xiang B, Dou B, Hu J, Zhang L, Kang X, et al. Novel Angiotensin-Converting Enzyme-Inhibitory Peptides Obtained from Trichiurus lepturus: Preparation, Identification and Potential Antihypertensive Mechanism. Biomolecules. 2024;14:581. https://doi.org/10.3390/biom14050581

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sutopo CCY, Aznam N, Arianingrum R, Hsu J-L. Screening potential hypertensive peptides using two consecutive bioassay-guided SPE fractionations and identification of an ACE inhibitory peptide, DHSTAVW (DW7), derived from pearl garlic protein hydrolysate. Peptides. 2023;167:171046. https://doi.org/10.1016/j.peptides.2023.171046

Article  CAS  Google Scholar 

Insuasty Cepeda DS, Pineda Castañeda HM, Rodríguez Mayor AV, García Castañeda JE, Maldonado Villamil M, Fierro Medina R, et al. Synthetic Peptide Purification via Solid-Phase Extraction with Gradient Elution: A Simple, Economical, Fast, and Efficient Methodology. Molecules. 2019;24:1215. https://doi.org/10.3390/molecules24071215

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang G, Qin S, Li W. Purification and characterization of a novel angiotensin I-converting enzyme-inhibitory peptide derived from Alaska pollack skins. J Food Sci. 2021;86:2457–67. https://doi.org/10.1111/1750-3841.15754

Article  CAS  PubMed  Google Scholar 

Shao M, Wu H, Wang B, Zhang X, Gao X, Jiang M, et al. Identification and Characterization of Novel ACE Inhibitory and Antioxidant Peptides from Sardina pilchardus Hydrolysate. Foods. 2023;12:2216. https://doi.org/10.3390/foods12112216

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mongkonkamthorn N, Malila Y, Yarnpakdee S, Makkhun S, Regenstein JM, Wangtueai S. Production of Protein Hydrolysate Containing Antioxidant and Angiotensin -I-Converting Enzyme (ACE) Inhibitory Activities from Tuna (Katsuwonus pelamis) Blood. Processes. 2020;8:1518. https://doi.org/10.3390/pr8111518

Article  CAS  Google Scholar 

Taheri A, Bakhshizadeh G A. Antioxidant and ACE Inhibitory Activities of Kawakawa (Euthynnus affinis) Protein Hydrolysate Produced by Skipjack Tuna Pepsin. J Aquat Food Prod Technol. 2020;29:148–66. https://doi.org/10.1080/10498850.2019.1707924

Article  CAS  Google Scholar 

Tacias-Pascacio VG, Morellon-Sterling R, Siar E-H, Tavano O, Berenguer-Murcia Á, Fernandez-Lafuente R. Use of Alcalase in the production of bioactive peptides: A review. Int J Biol Macromol. 2020;165:2143–96. https://doi.org/10.1016/j.ijbiomac.2020.10.060

Article  CAS  PubMed  Google Scholar 

Cinq-Mars CD, Li-Chan ECY. Optimizing Angiotensin I-Converting Enzyme Inhibitory Activity of Pacific Hake (Merluccius productus) Fillet Hydrolysate Using Response Surface Methodology and Ultrafiltration. J Agric Food Chem. 2007;55:9380–8. https://doi.org/10.1021/jf0713354

Article  CAS  PubMed  Google Scholar 

Yokoyama K, Chiba H, Yoshikawa M. Peptide Inhibitors for Angiotensin I-Converting Enzyme from Thermolysin Digest of Dried Bonitot. Biosci Biotechnol Biochem. 1992;56:1541–5. https://doi.org/10.1271/bbb.56.1541

Article  CAS  PubMed  Google Scholar 

Chen M, Wang L, Zheng C, Ma A, Hu K, Xiang A, et al. Novel ACE inhibitory peptides derived from bighead carp (Aristichthys nobilis) hydrolysates: Screening, inhibition mechanisms and the bioconjugation effect with graphene oxide. Food Biosci. 2023;52:102399. https://doi.org/10.1016/j.fbio.2023.102399

Article  CAS  Google Scholar 

Ko J-Y, Kang N, Lee J-H, Kim J-S, Kim W-S, Park S-J, et al. Angiotensin I-converting enzyme inhibitory peptides from an enzymatic hydrolysate of flounder fish (Paralichthys olivaceus) muscle as a potent anti-hypertensive agent. Process Biochem. 2016;51:535–41. https://doi.org/10.1016/j.procbio.2016.01.009

Article  CAS  Google Scholar 

留言 (0)

沒有登入
gif