Contrasting effect of different crowding agents on pseudoknot RNA stability

Warner KD, Hajdin CE, Weeks KM. Principles for targeting RNA with drug-like small molecules. Nat Rev Drug Discov. 2018;17:547–58. https://doi.org/10.1038/nrd.2018.93

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhu Y, Zhu L, Wang X, Jin H. RNA-based therapeutics: an overview and prospectus. Cell Death Dis. 2022;13:644 https://doi.org/10.1038/s41419-022-05075-2

Article  CAS  PubMed  PubMed Central  Google Scholar 

Satpathi S, Endoh T, Podbevšek P, Plavec J, Sugimoto N. Transcriptome screening followed by integrated physicochemical and structural analyses for investigating RNA-mediated berberine activity. Nucleic Acids Res. 2021;49:8449–61. https://doi.org/10.1093/nar/gkab189

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sugimoto N. Chemistry and Biology of Non-canonical Nucleic Acids. Weinheim, Germany: Wiley-VCH; 2021.

Vicens Q, Kieft JS. Thoughts on how to think (and talk) about RNA structure. Proc Natl Acad Sci. 2022;119:e2112677119 https://doi.org/10.1073/pnas.2112677119

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ellis RJ. Macromolecular crowding: obvious but underappreciated. Trends Biochem Sci. 2001;26:597–604. https://doi.org/10.1016/S0968-0004(01)01938-7

Article  CAS  PubMed  Google Scholar 

Zimmerman SB, Trach SO. Estimation of macromolecule concentrations and excluded volume effects for the cytoplasm of Escherichia coli. J Mol Biol. 1991;222:599–620. https://doi.org/10.1016/0022-2836(91)90499-V

Article  CAS  PubMed  Google Scholar 

Kuznetsova IM, Turoverov KK, Uversky VN. What macromolecular crowding can do to a protein. Int J Mol Sci. 2014;15:23090–140.

Article  PubMed  PubMed Central  Google Scholar 

Ellis RJ. Macromolecular crowding: an important but neglected aspect of the intracellular environment. Curr Opin Struct Biol. 2001;11:114–9. https://doi.org/10.1016/S0959-440X(00)00172-X

Article  CAS  PubMed  Google Scholar 

Takahashi S, Sugimoto N. Stability prediction of canonical and non-canonical structures of nucleic acids in various molecular environments and cells. Chem Soc Rev. 2020;49:8439–68. https://doi.org/10.1039/D0CS00594K

Article  CAS  PubMed  Google Scholar 

Choi J, Majima T. Conformational changes of non-B DNA. Chem Soc Rev. 2011;40:5893–909. https://doi.org/10.1039/C1CS15153C

Article  CAS  PubMed  Google Scholar 

Nakano S-i, Miyoshi D, Sugimoto N. Effects of molecular crowding on the structures, interactions, and functions of nucleic acids. Chem Rev. 2014;114:2733–58. https://doi.org/10.1021/cr400113m

Article  CAS  PubMed  Google Scholar 

Nakano S-i, Karimata HT, Kitagawa Y, Sugimoto N. Facilitation of RNA enzyme activity in the molecular crowding media of cosolutes. J Am Chem Soc. 2009;131:16881–8. https://doi.org/10.1021/ja9066628

Article  CAS  PubMed  Google Scholar 

Endoh T, Tateishi-Karimata H, Sugimoto N. Effects of molecular crowding on structures and functions of nucleic acids. In: Sugimoto N, editor. Handbook of Chemical Biology of Nucleic Acids. Singapore: Springer Nature Singapore; 2022. p. 1-45. https://doi.org/10.1007/978-981-16-1313-5_40-1

Brierley I, Pennell S, Gilbert RJC. Viral RNA pseudoknots: versatile motifs in gene expression and replication. Nat Rev Microbiol. 2007;5:598–610. https://doi.org/10.1038/nrmicro1704

Article  CAS  PubMed  PubMed Central  Google Scholar 

Peselis A, Serganov A. Structure and function of pseudoknots involved in gene expression control. WIREs RNA. 2014;5:803–22. https://doi.org/10.1002/wrna.1247

Article  CAS  PubMed  Google Scholar 

Hollar A, Bursey H, Jabbari H. Pseudoknots in RNA structure prediction. Curr Protoc. 2023;3:e661 https://doi.org/10.1002/cpz1.661

Article  CAS  PubMed  Google Scholar 

Roth A, Breaker RR. The structural and functional diversity of metabolite-binding Riboswitches. Annu Rev Biochem. 2009;78:305–34. https://doi.org/10.1146/annurev.biochem.78.070507.135656

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hajdin CE, Bellaousov S, Huggins W, Leonard CW, Mathews DH, Weeks KM. Accurate SHAPE-directed RNA secondary structure modeling, including pseudoknots. Proc Natl Acad Sci. 2013;110:5498 https://doi.org/10.1073/pnas.1219988110

Article  PubMed  PubMed Central  Google Scholar 

Satpathi S, Endoh T, Sugimoto N. Applicability of the nearest-neighbour model for pseudoknot RNAs. Chem Commun. 2022;58:5952–5. https://doi.org/10.1039/D1CC07094K

Article  CAS  Google Scholar 

Wenner JR, Bloomfield VA. Crowding Effects on EcoRV Kinetics and Binding. Biophys J. 1999;77:3234–41. https://doi.org/10.1016/S0006-3495(99)77154-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rajendran A, Nakano S-i, Sugimoto N. Molecular crowding of the cosolutes induces an intramolecular i-motif structure of triplet repeat DNA oligomers at neutral pH. Chem Commun. 2010;46:1299–301. https://doi.org/10.1039/B922050J

Article  CAS  Google Scholar 

Johnson KH, Gray DM. Analysis of an RNA Pseudoknot structure by CD Spectroscopy. J Biomol Struct Dyn. 1992;9:733–45. https://doi.org/10.1080/07391102.1992.10507952

Article  CAS  PubMed  Google Scholar 

Buscaglia R, Miller MC, Dean WL, Gray RD, Lane AN, Trent JO, et al. Polyethylene glycol binding alters human telomere G-quadruplex structure by conformational selection. Nucleic Acids Res. 2013;41:7934–46. https://doi.org/10.1093/nar/gkt440

Article  CAS  PubMed  PubMed Central  Google Scholar 

Trajkovski M, Endoh T, Tateishi-Karimata H, Ohyama T, Tanaka S, Plavec J, et al. Pursuing origins of (poly)ethylene glycol-induced G-quadruplex structural modulations. Nucleic Acids Res. 2018;46:4301–15. https://doi.org/10.1093/nar/gky250

Article  CAS  PubMed  PubMed Central  Google Scholar 

Akhadov YY. Dielectric Properties of Binary Solutions: A Data Handbook. Elsevier; 2013.

Karimata H, Nakano S-I, Ohmichi T, Kawakami J, Sugimoto N. Stabilization of a DNA duplex under molecular crowding conditions of PEG. Nucleic Acids Symp Ser. 2004;48:107–8. https://doi.org/10.1093/nass/48.1.107

Article  Google Scholar 

Banerjee D, Tateishi-Karimata H, Toplishek M, Ohyama T, Ghosh S, Takahashi S, et al. In-cell stability prediction of RNA/DNA hybrid duplexes for designing oligonucleotides aimed at therapeutics. J Am Chem Soc. 2023;145:23503–18. https://doi.org/10.1021/jacs.3c06706

Article  CAS  PubMed  Google Scholar 

Ghosh S, Takahashi S, Ohyama T, Endoh T, Tateishi-Karimata H, Sugimoto N. Nearest-neighbor parameters for predicting DNA duplex stability in diverse molecular crowding conditions. Proc Natl Acad Sci. 2020;117:14194–201. https://doi.org/10.1073/pnas.1920886117

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif