Comparative karyotype analysis of the red brocket deer (M. americana sensu lato and M. rufa) complex: evidence of drastic chromosomal evolution and implications on speciation process

Abril VV, Carnelossi EAG, González S, Duarte JMB (2010) Elucidating the evolution of the red brocket deer Mazama americana complex (Artiodactyla; Cervidae). Cytogenet Genome Res 128:177–187. https://doi.org/10.1159/000298819

Article  CAS  PubMed  Google Scholar 

Abril VV, Duarte JMB (2008) Chromosome polymorphism in the Brazilian dwarf brocket deer, Mazama nana (Mammalia, Cervidae). Genet Mol Biol 31(1):53–57. https://doi.org/10.1590/S1415-47572008000100011

Article  Google Scholar 

Banaszek A, Fedyk S, Szałaj K, Chętnicki W (2000) A comparison of spermatogenesis in homozygotes, simple Robertsonian heterozygotes and complex heterozygotes of the common shrew (Sorex araneus L.). Heredity 85:570–577. https://doi.org/10.1046/j.1365-2540.2000.00701.x

Article  Google Scholar 

Banaszek A, Fedyk S, Fiedorczuk U, Szałaj KA, Chętnicki W (2002) Meiotic studies of male common shrews (Sorex araneus L.) from a hybrid zone between chromosome races. Cytogenet Genome Res 96:40–44. https://doi.org/10.1159/000063025

Article  CAS  PubMed  Google Scholar 

Bailey JA, Baertsch R, Kent WJ et al (2004) Hotspots of mammalian chromosomal evolution. Genome Biol 5:R23. https://doi.org/10.1186/gb-2004-5-4-r23

Article  PubMed  PubMed Central  Google Scholar 

Basset P, Yannic G, Hausser J (2019) Is it really the chromosomes? In: Searle JB, Polly PD, Zima J (eds) Shrews, chromosomes and speciation. Cambridge University Press, Cambridge, pp 365–383

Chapter  Google Scholar 

Bernegossi AM, Vozdova M, Cernohorska H et al (2022) Cytogenetic mapping of cattle BAC probes for the hypothetical ancestral karyotype of the family Cervidae. Cytogenet Genome Res 162:140–147. https://doi.org/10.1159/000525592

Article  CAS  PubMed  Google Scholar 

Bernegossi AM, Borges CHS, Sandoval EDP et al (2023) Resurrection of the genus Subulo Smith, 1827 for the gray brocket deer, with designation of a neotype. J Mammal. https://doi.org/10.1093/jmammal/gyac068

Article  Google Scholar 

Bennett KD, Provan J (2008) What do we mean by ‘refugia’? Quaternary Sc Rev 27(27–28):2449–2455. https://doi.org/10.1007/s00421-008-0955-8

Article  Google Scholar 

Carranza J, Roldán M, Duarte JMB (2018) Lack of mate selectivity for genetic compatibility within the red brocket deer Mazama americana complex. Mamm Biol 88:168–175. https://doi.org/10.1016/j.mambio.2017.09.006

Article  Google Scholar 

Cernohorska H, Kubickova S, Vahala J, Rubes J (2012) Molecular insights into X;BTA5 chromosome rearrangements in the Tribe Antilopini (Bovidae). Cytogenet Genome Res 136:188–198. https://doi.org/10.1159/000336248

Article  CAS  PubMed  Google Scholar 

Chi JX, Huang L, Nie W, Wang J, Su B, Yang F (2005) Defining the orientation of the tandem fusions that occurred during the evolution of Indian muntjac chromosomes by BAC mapping. Chromosoma 114:167–172. https://doi.org/10.1007/s00412-005-0004-x

Article  CAS  PubMed  Google Scholar 

Cifuentes-Rincón A, Morales-Donoso JA, Sandoval EDP et al (2020) Designation of a neotype for Mazama americana (Artiodactyla, Cervidae) reveals a cryptic new complex of brocket deer species. Zookeys 958:143–164. https://doi.org/10.3897/zookeys.958.50300

Article  PubMed  PubMed Central  Google Scholar 

Cursino MS, Salviano MB, Abril VV, Zanetti ES, Duarte JMB (2014) The role of chromosome variation in the speciation of the red brocket deer complex: the study of reproductive isolation in females. BMC Evol Biol 14:40. https://doi.org/10.1186/1471-2148-14-40

Article  PubMed  PubMed Central  Google Scholar 

Damas J, Corbo M, Lewin HA (2021) Vertebrate chromosome evolution. Ann Rev Ani Biosc 9(1):1–27. https://doi.org/10.1146/annurev-animal-020518-114924

Article  Google Scholar 

De Queiroz K (2007) Species concepts and species delimitation. Syst Biol 56:879–886. https://doi.org/10.1080/10635150701701083

Article  PubMed  Google Scholar 

Dementyeva PV, Trifonov VA, Kulemzina AI, Graphodatsky AS (2010) Reconstruction of the putative Cervidae ancestral karyotype by chromosome painting of Siberian roe deer (Capreolus pygargus) with dromedary probes. Cytogenet Genome Res 128:228–235. https://doi.org/10.1159/000298878

Article  CAS  PubMed  Google Scholar 

di Dio C, Longobardi V, Zullo G, Parma P et al (2020) Analysis of meiotic segregation by triple-color fish on both total and motile sperm fractions in a t(1p;18) river buffalo bull. PLoS ONE 15:e0232592. https://doi.org/10.1371/journal.pone.0232592

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dobigny G, Britton-Davidian J, Robinson TJ (2017) Chromosomal polymorphism in mammals: an evolutionary perspective. Biol Rev Camb Philos Soc 92:1–21. https://doi.org/10.1111/brv.12213

Article  PubMed  Google Scholar 

Donaldson B, Villagomez DAF, King WA (2021) Classical, molecular, and genomic cytogenetics of the pig, a clinical perspective. Animals 11:1257. https://doi.org/10.3390/ani11051257

Article  PubMed  PubMed Central  Google Scholar 

Duarte JMB, Jorge W (1996) Chromosomal polymorphism in several populations of deer (genus Mazama) from Brazil. Arch Zootec 45:281–287

Google Scholar 

Duarte JMB, Jorge W (2003) Morphologic and cytogenetic description of the small red brocket (Mazama bororo Duarte, 1996) in Brazil. Mammalia 67:403–410. https://doi.org/10.1515/mamm.2003.67.3.403

Article  Google Scholar 

Duarte JMB, González S, Maldonado JE (2008) The surprising evolutionary history of South American deer. Mol Phylogenet Evol 49:17–22. https://doi.org/10.1016/j.ympev.2008.07.009

Article  CAS  PubMed  Google Scholar 

Duarte JMB, González S (2010) Neotropical cervidology: biology and medicine of Latin American deer. FUNEP/IUCN, Jaboticabal, São Paulo, Brazil.

Duarte JMB, Vogliotti A (2016) Mazama americana. The IUCN Red List of Threatened Species 2016:e.T29619A22154827. https://doi.org/10.2305/IUCN.UK.2016-1.RLTS.T29619A22154827.en

Duarte JMB, Boer JA, Sandoval EDP et al (2021) Skin freezing technique for living cell bank. GenProtocols https://genprotocols.genengnews.com/protocols/skin-freezing-technique-for-living-cell-bank/1041. Accessed 26 August 2022

Erxleben JCP (1777) Systema regni animalis per classes, ordines, genera, species, varietates cum synonymia et historia animalium, Classis 1. Mammalia. Impensis Weygandianis, Lipsiae

Faria R, Navarro A (2010) Chromosomal speciation revisited: rearranging theory with pieces of evidence. Trends Ecol Evol 25:660–669. https://doi.org/10.1016/j.tree.2010.07.008

Article  PubMed  Google Scholar 

Ferguson-Smith M, Trifonov V (2007) Mammalian karyotype evolution. Nat Rev Genet 8:950–962. https://doi.org/10.1038/nrg2199

Article  CAS  PubMed  Google Scholar 

Fiorillo BF, Sarria-Perea JA, Abril VV, Duarte JMB (2013) Cytogenetic description of the Amazonian brown brocket Mazama nemorivaga (Artiodactyla, Cervidae). Comparative Cytogenetics 7:25–31. https://doi.org/10.3897/CompCytogen.v7i1.4314

Article  PubMed  PubMed Central  Google Scholar 

Fišer C, Robinson CT, Malard F (2018) Cryptic Species as a window into the paradigm shift of the species concept. Mol Ecol 27:613–635. https://doi.org/10.1111/mec.14486

Article  PubMed  Google Scholar 

Fontana F, Rubini M (1990) Chromosomal Evolution in Cervidae Biosyst 34:157–174. https://doi.org/10.1016/0303-2647(90)90008-o

Article  Google Scholar 

Frohlich J, Kubickova S, Musilova P, Cernohorska H, Muskova R, Vodicka R, Rubes J (2017) Karyotype relationships among selected deer species and cattle revealed by bovine FISH probes. PLoS ONE 12:1–17. https://doi.org/10.1371/journal.pone.0187559

Article  CAS  Google Scholar 

Garagna S, Zuccotti M, Searle JB, Redi CA, Wilkinson PJ (1989) Spermatogenesis in heterozygotes for Robertsonian chromosomal rearrangements from natural populations of the common shrew, Sorex araneus. J Reprod Fertil 87:431–438. https://doi.org/10.1530/jrf.0.0870431

Article  CAS  PubMed  Google Scholar 

Garagna S, Page J, Fernandez-Donoso R, Zuccotti M, Searle JB (2014) The Robertsonian phenomenon in the house mouse: mutation, meiosis and speciation. Chromosoma 123(6):529–544. https://doi.org/10.1007/s00412-014-0477-6

Article  PubMed 

留言 (0)

沒有登入
gif