Abril VV, Carnelossi EAG, González S, Duarte JMB (2010) Elucidating the evolution of the red brocket deer Mazama americana complex (Artiodactyla; Cervidae). Cytogenet Genome Res 128:177–187. https://doi.org/10.1159/000298819
Article CAS PubMed Google Scholar
Abril VV, Duarte JMB (2008) Chromosome polymorphism in the Brazilian dwarf brocket deer, Mazama nana (Mammalia, Cervidae). Genet Mol Biol 31(1):53–57. https://doi.org/10.1590/S1415-47572008000100011
Banaszek A, Fedyk S, Szałaj K, Chętnicki W (2000) A comparison of spermatogenesis in homozygotes, simple Robertsonian heterozygotes and complex heterozygotes of the common shrew (Sorex araneus L.). Heredity 85:570–577. https://doi.org/10.1046/j.1365-2540.2000.00701.x
Banaszek A, Fedyk S, Fiedorczuk U, Szałaj KA, Chętnicki W (2002) Meiotic studies of male common shrews (Sorex araneus L.) from a hybrid zone between chromosome races. Cytogenet Genome Res 96:40–44. https://doi.org/10.1159/000063025
Article CAS PubMed Google Scholar
Bailey JA, Baertsch R, Kent WJ et al (2004) Hotspots of mammalian chromosomal evolution. Genome Biol 5:R23. https://doi.org/10.1186/gb-2004-5-4-r23
Article PubMed PubMed Central Google Scholar
Basset P, Yannic G, Hausser J (2019) Is it really the chromosomes? In: Searle JB, Polly PD, Zima J (eds) Shrews, chromosomes and speciation. Cambridge University Press, Cambridge, pp 365–383
Bernegossi AM, Vozdova M, Cernohorska H et al (2022) Cytogenetic mapping of cattle BAC probes for the hypothetical ancestral karyotype of the family Cervidae. Cytogenet Genome Res 162:140–147. https://doi.org/10.1159/000525592
Article CAS PubMed Google Scholar
Bernegossi AM, Borges CHS, Sandoval EDP et al (2023) Resurrection of the genus Subulo Smith, 1827 for the gray brocket deer, with designation of a neotype. J Mammal. https://doi.org/10.1093/jmammal/gyac068
Bennett KD, Provan J (2008) What do we mean by ‘refugia’? Quaternary Sc Rev 27(27–28):2449–2455. https://doi.org/10.1007/s00421-008-0955-8
Carranza J, Roldán M, Duarte JMB (2018) Lack of mate selectivity for genetic compatibility within the red brocket deer Mazama americana complex. Mamm Biol 88:168–175. https://doi.org/10.1016/j.mambio.2017.09.006
Cernohorska H, Kubickova S, Vahala J, Rubes J (2012) Molecular insights into X;BTA5 chromosome rearrangements in the Tribe Antilopini (Bovidae). Cytogenet Genome Res 136:188–198. https://doi.org/10.1159/000336248
Article CAS PubMed Google Scholar
Chi JX, Huang L, Nie W, Wang J, Su B, Yang F (2005) Defining the orientation of the tandem fusions that occurred during the evolution of Indian muntjac chromosomes by BAC mapping. Chromosoma 114:167–172. https://doi.org/10.1007/s00412-005-0004-x
Article CAS PubMed Google Scholar
Cifuentes-Rincón A, Morales-Donoso JA, Sandoval EDP et al (2020) Designation of a neotype for Mazama americana (Artiodactyla, Cervidae) reveals a cryptic new complex of brocket deer species. Zookeys 958:143–164. https://doi.org/10.3897/zookeys.958.50300
Article PubMed PubMed Central Google Scholar
Cursino MS, Salviano MB, Abril VV, Zanetti ES, Duarte JMB (2014) The role of chromosome variation in the speciation of the red brocket deer complex: the study of reproductive isolation in females. BMC Evol Biol 14:40. https://doi.org/10.1186/1471-2148-14-40
Article PubMed PubMed Central Google Scholar
Damas J, Corbo M, Lewin HA (2021) Vertebrate chromosome evolution. Ann Rev Ani Biosc 9(1):1–27. https://doi.org/10.1146/annurev-animal-020518-114924
De Queiroz K (2007) Species concepts and species delimitation. Syst Biol 56:879–886. https://doi.org/10.1080/10635150701701083
Dementyeva PV, Trifonov VA, Kulemzina AI, Graphodatsky AS (2010) Reconstruction of the putative Cervidae ancestral karyotype by chromosome painting of Siberian roe deer (Capreolus pygargus) with dromedary probes. Cytogenet Genome Res 128:228–235. https://doi.org/10.1159/000298878
Article CAS PubMed Google Scholar
di Dio C, Longobardi V, Zullo G, Parma P et al (2020) Analysis of meiotic segregation by triple-color fish on both total and motile sperm fractions in a t(1p;18) river buffalo bull. PLoS ONE 15:e0232592. https://doi.org/10.1371/journal.pone.0232592
Article CAS PubMed PubMed Central Google Scholar
Dobigny G, Britton-Davidian J, Robinson TJ (2017) Chromosomal polymorphism in mammals: an evolutionary perspective. Biol Rev Camb Philos Soc 92:1–21. https://doi.org/10.1111/brv.12213
Donaldson B, Villagomez DAF, King WA (2021) Classical, molecular, and genomic cytogenetics of the pig, a clinical perspective. Animals 11:1257. https://doi.org/10.3390/ani11051257
Article PubMed PubMed Central Google Scholar
Duarte JMB, Jorge W (1996) Chromosomal polymorphism in several populations of deer (genus Mazama) from Brazil. Arch Zootec 45:281–287
Duarte JMB, Jorge W (2003) Morphologic and cytogenetic description of the small red brocket (Mazama bororo Duarte, 1996) in Brazil. Mammalia 67:403–410. https://doi.org/10.1515/mamm.2003.67.3.403
Duarte JMB, González S, Maldonado JE (2008) The surprising evolutionary history of South American deer. Mol Phylogenet Evol 49:17–22. https://doi.org/10.1016/j.ympev.2008.07.009
Article CAS PubMed Google Scholar
Duarte JMB, González S (2010) Neotropical cervidology: biology and medicine of Latin American deer. FUNEP/IUCN, Jaboticabal, São Paulo, Brazil.
Duarte JMB, Vogliotti A (2016) Mazama americana. The IUCN Red List of Threatened Species 2016:e.T29619A22154827. https://doi.org/10.2305/IUCN.UK.2016-1.RLTS.T29619A22154827.en
Duarte JMB, Boer JA, Sandoval EDP et al (2021) Skin freezing technique for living cell bank. GenProtocols https://genprotocols.genengnews.com/protocols/skin-freezing-technique-for-living-cell-bank/1041. Accessed 26 August 2022
Erxleben JCP (1777) Systema regni animalis per classes, ordines, genera, species, varietates cum synonymia et historia animalium, Classis 1. Mammalia. Impensis Weygandianis, Lipsiae
Faria R, Navarro A (2010) Chromosomal speciation revisited: rearranging theory with pieces of evidence. Trends Ecol Evol 25:660–669. https://doi.org/10.1016/j.tree.2010.07.008
Ferguson-Smith M, Trifonov V (2007) Mammalian karyotype evolution. Nat Rev Genet 8:950–962. https://doi.org/10.1038/nrg2199
Article CAS PubMed Google Scholar
Fiorillo BF, Sarria-Perea JA, Abril VV, Duarte JMB (2013) Cytogenetic description of the Amazonian brown brocket Mazama nemorivaga (Artiodactyla, Cervidae). Comparative Cytogenetics 7:25–31. https://doi.org/10.3897/CompCytogen.v7i1.4314
Article PubMed PubMed Central Google Scholar
Fišer C, Robinson CT, Malard F (2018) Cryptic Species as a window into the paradigm shift of the species concept. Mol Ecol 27:613–635. https://doi.org/10.1111/mec.14486
Fontana F, Rubini M (1990) Chromosomal Evolution in Cervidae Biosyst 34:157–174. https://doi.org/10.1016/0303-2647(90)90008-o
Frohlich J, Kubickova S, Musilova P, Cernohorska H, Muskova R, Vodicka R, Rubes J (2017) Karyotype relationships among selected deer species and cattle revealed by bovine FISH probes. PLoS ONE 12:1–17. https://doi.org/10.1371/journal.pone.0187559
Garagna S, Zuccotti M, Searle JB, Redi CA, Wilkinson PJ (1989) Spermatogenesis in heterozygotes for Robertsonian chromosomal rearrangements from natural populations of the common shrew, Sorex araneus. J Reprod Fertil 87:431–438. https://doi.org/10.1530/jrf.0.0870431
Article CAS PubMed Google Scholar
Garagna S, Page J, Fernandez-Donoso R, Zuccotti M, Searle JB (2014) The Robertsonian phenomenon in the house mouse: mutation, meiosis and speciation. Chromosoma 123(6):529–544. https://doi.org/10.1007/s00412-014-0477-6
留言 (0)