Hemnes, A. R. et al. Clinical characteristics and transplant-free survival across the spectrum of pulmonary vascular disease. J. Am. Coll. Cardiol. 80, 697–718 (2022).
Article PubMed PubMed Central Google Scholar
Sommer, N. et al. Current and future treatments of pulmonary arterial hypertension. Br. J. Pharmacol. 178, 6–30 (2021).
Article CAS PubMed Google Scholar
Naeije, R., Richter, M. J. & Rubin, L. J. The physiological basis of pulmonary arterial hypertension. Eur. Respir. J. 59, 2102334 (2022).
Article PubMed PubMed Central Google Scholar
Lahm, T. et al. Assessment of right ventricular function in the research setting: knowledge gaps and pathways forward. An official American Thoracic Society research statement. Am. J. Respir. Crit. Care Med. 198, e15–e43 (2018).
Article PubMed PubMed Central Google Scholar
Humbert, M. et al. 2022 ESC/ERS guidelines for the diagnosis and treatment of pulmonary hypertension. Eur. Heart J. 43, 3618–3731 (2022).
Article CAS PubMed Google Scholar
Opitz, C. F. et al. Pre-capillary, combined, and post-capillary pulmonary hypertension: a pathophysiological continuum. J. Am. Coll. Cardiol. 68, 368–378 (2016).
Hoeper, M. M. et al. Phenotyping of idiopathic pulmonary arterial hypertension: a registry analysis. Lancet Respir. Med. 10, 937–948 (2022).
Article CAS PubMed PubMed Central Google Scholar
US Food and Drug Administration. Drugs@FDA: FDA-Approved Drugs. Biologic License Application (BLA): 761363 https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=761363 (2024).
Morrell, N. W. et al. Genetics and genomics of pulmonary arterial hypertension. Eur. Respir. J. 53, 1801899 (2019).
Article CAS PubMed PubMed Central Google Scholar
Theilmann, A. L. et al. Endothelial BMPR2 loss drives a proliferative response to BMP (bone morphogenetic protein) 9 via prolonged canonical signaling. Arterioscler. Thromb. Vasc. Biol. 40, 2605–2618 (2020).
Article CAS PubMed PubMed Central Google Scholar
Hiepen, C. et al. BMPR2 acts as a gatekeeper to protect endothelial cells from increased TGFβ responses and altered cell mechanics. PLoS Biol. 17, e3000557 (2019).
Article PubMed PubMed Central Google Scholar
Hopper, R. K. et al. In pulmonary arterial hypertension, reduced BMPR2 promotes endothelial-to-mesenchymal transition via HMGA1 and its target slug. Circulation 133, 1783–1794 (2016).
Article CAS PubMed PubMed Central Google Scholar
Yang, X. et al. Dysfunctional Smad signaling contributes to abnormal smooth muscle cell proliferation in familial pulmonary arterial hypertension. Circ. Res. 96, 1053–1063 (2005).
Article CAS PubMed Google Scholar
Trembath, R. C. et al. Clinical and molecular genetic features of pulmonary hypertension in patients with hereditary hemorrhagic telangiectasia. N. Engl. J. Med. 345, 325–334 (2001).
Article CAS PubMed Google Scholar
Harrison, R. E. et al. Transforming growth factor-β receptor mutations and pulmonary arterial hypertension in childhood. Circulation 111, 435–441 (2005).
Article CAS PubMed Google Scholar
Chaouat, A. et al. Endoglin germline mutation in a patient with hereditary haemorrhagic telangiectasia and dexfenfluramine associated pulmonary arterial hypertension. Thorax 59, 446–448 (2004).
Article CAS PubMed PubMed Central Google Scholar
Graf, S. et al. Identification of rare sequence variation underlying heritable pulmonary arterial hypertension. Nat. Commun. 9, 1416 (2018).
Article PubMed PubMed Central Google Scholar
Archer, S. L. et al. Epigenetic attenuation of mitochondrial superoxide dismutase 2 in pulmonary arterial hypertension: a basis for excessive cell proliferation and a new therapeutic target. Circulation 121, 2661–2671 (2010).
Article CAS PubMed PubMed Central Google Scholar
Liu, D. et al. Hypermethylation of BMPR2 promoter occurs in patients with heritable pulmonary arterial hypertension and inhibits BMPR2 expression. Am. J. Respir. Crit. Care Med. 196, 925–928 (2017).
Article CAS PubMed Google Scholar
Cook, E. K. et al. DNMT3A and TET2 mutations: linking genetics and epigenetics in pulmonary arterial hypertension. Am. J. Respir. Crit. Care Med. 199, A2397 (2019).
Potus, F. et al. Novel mutations and decreased expression of the epigenetic regulator TET2 in pulmonary arterial hypertension. Circulation 141, 1986–2000 (2020).
Article CAS PubMed PubMed Central Google Scholar
Emon, I. M., Al-Qazazi, R., Rauh, M. J. & Archer, S. L. The role of clonal hematopoiesis of indeterminant potential and DNA (Cytosine-5)-methyltransferase dysregulation in pulmonary arterial hypertension and other cardiovascular diseases. Cells 12, 2528 (2023).
Article CAS PubMed PubMed Central Google Scholar
Chelladurai, P. et al. Targeting histone acetylation in pulmonary hypertension and right ventricular hypertrophy. Br. J. Pharmacol. 178, 54–71 (2021).
Article CAS PubMed Google Scholar
Zhao, L. et al. Histone deacetylation inhibition in pulmonary hypertension: therapeutic potential of valproic acid and suberoylanilide hydroxamic acid. Circulation 126, 455–467 (2012).
Article CAS PubMed PubMed Central Google Scholar
Boucherat, O. et al. HDAC6: a novel histone deacetylase implicated in pulmonary arterial hypertension. Sci. Rep. 7, 4546 (2017).
Article PubMed PubMed Central Google Scholar
Paulin, R. et al. Sirtuin 3 deficiency is associated with inhibited mitochondrial function and pulmonary arterial hypertension in rodents and humans. Cell Metab. 20, 827–839 (2014).
Article CAS PubMed Google Scholar
Meloche, J. et al. Bromodomain-containing protein 4: the epigenetic origin of pulmonary arterial hypertension. Circ. Res. 117, 525–535 (2015).
Article CAS PubMed Google Scholar
Bernardi, N., Bianconi, E., Vecchi, A. & Ameri, P. Noncoding RNAs in pulmonary arterial hypertension: current knowledge and translational perspectives. Heart Fail. Clin. 19, 137–152 (2023).
Le Ribeuz, H. et al. In vivo miR-138-5p inhibition alleviates monocrotaline-induced pulmonary hypertension and normalizes pulmonary KCNK3 and SLC45A3 expression. Respir. Res. 21, 186 (2020).
Article PubMed PubMed Central Google Scholar
Substance Abuse and Mental Health Services Administration. Key substance use and mental health indicators in the United States: results from the 2019 National Survey on Drug Use and Health. https://www.samhsa.gov/data/ (Center for Behavioral Health Statistics and Quality, Substance Abuse and Mental Health Services Administration, 2020).
European Monitoring for Drugs and Drug Addiction & Europol. EU drug market: methamphetamine — in-depth analysis. https://www.emcdda.europa.eu/publications/eu-drug-markets/methamphetamine_en (2022).
Chin, K. M., Channick, R. N. & Rubin, L. J. Is methamphetamine use associated with idiopathic pulmonary arterial hypertension? Chest 130, 1657–1663 (2006).
Article CAS PubMed Google Scholar
Rothman, R. B., Ayestas, M. A., Dersch, C. M. & Baumann, M. H. Aminorex, fenfluramine, and chlorphentermine are serotonin transporter substrates. Implications for primary pulmonary hypertension. Circu
留言 (0)