Mechanisms and treatment of pulmonary arterial hypertension

Hemnes, A. R. et al. Clinical characteristics and transplant-free survival across the spectrum of pulmonary vascular disease. J. Am. Coll. Cardiol. 80, 697–718 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Sommer, N. et al. Current and future treatments of pulmonary arterial hypertension. Br. J. Pharmacol. 178, 6–30 (2021).

Article  CAS  PubMed  Google Scholar 

Naeije, R., Richter, M. J. & Rubin, L. J. The physiological basis of pulmonary arterial hypertension. Eur. Respir. J. 59, 2102334 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Lahm, T. et al. Assessment of right ventricular function in the research setting: knowledge gaps and pathways forward. An official American Thoracic Society research statement. Am. J. Respir. Crit. Care Med. 198, e15–e43 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Humbert, M. et al. 2022 ESC/ERS guidelines for the diagnosis and treatment of pulmonary hypertension. Eur. Heart J. 43, 3618–3731 (2022).

Article  CAS  PubMed  Google Scholar 

Opitz, C. F. et al. Pre-capillary, combined, and post-capillary pulmonary hypertension: a pathophysiological continuum. J. Am. Coll. Cardiol. 68, 368–378 (2016).

Article  PubMed  Google Scholar 

Hoeper, M. M. et al. Phenotyping of idiopathic pulmonary arterial hypertension: a registry analysis. Lancet Respir. Med. 10, 937–948 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

US Food and Drug Administration. Drugs@FDA: FDA-Approved Drugs. Biologic License Application (BLA): 761363 https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=761363 (2024).

Morrell, N. W. et al. Genetics and genomics of pulmonary arterial hypertension. Eur. Respir. J. 53, 1801899 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Theilmann, A. L. et al. Endothelial BMPR2 loss drives a proliferative response to BMP (bone morphogenetic protein) 9 via prolonged canonical signaling. Arterioscler. Thromb. Vasc. Biol. 40, 2605–2618 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hiepen, C. et al. BMPR2 acts as a gatekeeper to protect endothelial cells from increased TGFβ responses and altered cell mechanics. PLoS Biol. 17, e3000557 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Hopper, R. K. et al. In pulmonary arterial hypertension, reduced BMPR2 promotes endothelial-to-mesenchymal transition via HMGA1 and its target slug. Circulation 133, 1783–1794 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang, X. et al. Dysfunctional Smad signaling contributes to abnormal smooth muscle cell proliferation in familial pulmonary arterial hypertension. Circ. Res. 96, 1053–1063 (2005).

Article  CAS  PubMed  Google Scholar 

Trembath, R. C. et al. Clinical and molecular genetic features of pulmonary hypertension in patients with hereditary hemorrhagic telangiectasia. N. Engl. J. Med. 345, 325–334 (2001).

Article  CAS  PubMed  Google Scholar 

Harrison, R. E. et al. Transforming growth factor-β receptor mutations and pulmonary arterial hypertension in childhood. Circulation 111, 435–441 (2005).

Article  CAS  PubMed  Google Scholar 

Chaouat, A. et al. Endoglin germline mutation in a patient with hereditary haemorrhagic telangiectasia and dexfenfluramine associated pulmonary arterial hypertension. Thorax 59, 446–448 (2004).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Graf, S. et al. Identification of rare sequence variation underlying heritable pulmonary arterial hypertension. Nat. Commun. 9, 1416 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Archer, S. L. et al. Epigenetic attenuation of mitochondrial superoxide dismutase 2 in pulmonary arterial hypertension: a basis for excessive cell proliferation and a new therapeutic target. Circulation 121, 2661–2671 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu, D. et al. Hypermethylation of BMPR2 promoter occurs in patients with heritable pulmonary arterial hypertension and inhibits BMPR2 expression. Am. J. Respir. Crit. Care Med. 196, 925–928 (2017).

Article  CAS  PubMed  Google Scholar 

Cook, E. K. et al. DNMT3A and TET2 mutations: linking genetics and epigenetics in pulmonary arterial hypertension. Am. J. Respir. Crit. Care Med. 199, A2397 (2019).

Google Scholar 

Potus, F. et al. Novel mutations and decreased expression of the epigenetic regulator TET2 in pulmonary arterial hypertension. Circulation 141, 1986–2000 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Emon, I. M., Al-Qazazi, R., Rauh, M. J. & Archer, S. L. The role of clonal hematopoiesis of indeterminant potential and DNA (Cytosine-5)-methyltransferase dysregulation in pulmonary arterial hypertension and other cardiovascular diseases. Cells 12, 2528 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chelladurai, P. et al. Targeting histone acetylation in pulmonary hypertension and right ventricular hypertrophy. Br. J. Pharmacol. 178, 54–71 (2021).

Article  CAS  PubMed  Google Scholar 

Zhao, L. et al. Histone deacetylation inhibition in pulmonary hypertension: therapeutic potential of valproic acid and suberoylanilide hydroxamic acid. Circulation 126, 455–467 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Boucherat, O. et al. HDAC6: a novel histone deacetylase implicated in pulmonary arterial hypertension. Sci. Rep. 7, 4546 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Paulin, R. et al. Sirtuin 3 deficiency is associated with inhibited mitochondrial function and pulmonary arterial hypertension in rodents and humans. Cell Metab. 20, 827–839 (2014).

Article  CAS  PubMed  Google Scholar 

Meloche, J. et al. Bromodomain-containing protein 4: the epigenetic origin of pulmonary arterial hypertension. Circ. Res. 117, 525–535 (2015).

Article  CAS  PubMed  Google Scholar 

Bernardi, N., Bianconi, E., Vecchi, A. & Ameri, P. Noncoding RNAs in pulmonary arterial hypertension: current knowledge and translational perspectives. Heart Fail. Clin. 19, 137–152 (2023).

Article  PubMed  Google Scholar 

Le Ribeuz, H. et al. In vivo miR-138-5p inhibition alleviates monocrotaline-induced pulmonary hypertension and normalizes pulmonary KCNK3 and SLC45A3 expression. Respir. Res. 21, 186 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Substance Abuse and Mental Health Services Administration. Key substance use and mental health indicators in the United States: results from the 2019 National Survey on Drug Use and Health. https://www.samhsa.gov/data/ (Center for Behavioral Health Statistics and Quality, Substance Abuse and Mental Health Services Administration, 2020).

European Monitoring for Drugs and Drug Addiction & Europol. EU drug market: methamphetamine — in-depth analysis. https://www.emcdda.europa.eu/publications/eu-drug-markets/methamphetamine_en (2022).

Chin, K. M., Channick, R. N. & Rubin, L. J. Is methamphetamine use associated with idiopathic pulmonary arterial hypertension? Chest 130, 1657–1663 (2006).

Article  CAS  PubMed  Google Scholar 

Rothman, R. B., Ayestas, M. A., Dersch, C. M. & Baumann, M. H. Aminorex, fenfluramine, and chlorphentermine are serotonin transporter substrates. Implications for primary pulmonary hypertension. Circu

留言 (0)

沒有登入
gif