Harada A, Oguchi K, Okabe S, Kuno J, Terada S, Ohshima T, et al. Altered microtubule organization in small-calibre axons of mice lacking tau protein. Nature. 1994;369:488–91.
Article CAS PubMed Google Scholar
Spillantini MG, Goedert M. Tau protein pathology in neurodegenerative diseases. Trends Neurosci. 1998. p. 428–33.
Tolnay M, Probst A. Tau protein pathology in Alzheimer’s disease and related disorders. Neuropathol Appl Neurobiol. 1999. p. 171–87.
Goedert M. Filamentous nerve cell inclusions in neurodegenerative diseases: tauopathies and α-synucleinopathies. Philos Trans R Soc B Biol Sci. 1999;354:1101–18.
Goedert M, Spillantini MG, Jakes R, Rutherford D, Crowther RA. Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer’s disease. Neuron. 1989;3:519–26.
Article CAS PubMed Google Scholar
Buée L, Bussière T, Buée-Scherrer V, Delacourte A, Hof PR. Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res Rev. 2000. p. 95–130.
Lee VMY, Goedert M, Trojanowski JQ. Neurodegenerative tauopathies. Annu Rev Neurosci. 2001. p. 1121–59.
Strang KH, Golde TE, Giasson BI. MAPT mutations, tauopathy, and mechanisms of neurodegeneration. Lab Investig. 2019. p. 912–28.
Ramsden M, Kotilinek L, Forster C, Paulson J, McGowan E, SantaCruz K, et al. Age-dependent neurofibrillary tangle formation, neuron loss, and memory impairment in a mouse model of human tauopathy (P301L). J Neurosci. 2005;25:10637–47.
Article CAS PubMed PubMed Central Google Scholar
Scattoni ML, Gasparini L, Alleva E, Goedert M, Calamandrei G, Spillantini MG. Early behavioural markers of disease in P301S tau transgenic mice. Behav Brain Res. 2010;208:250–7.
Article CAS PubMed Google Scholar
Spires TL, Orne JD, SantaCruz K, Pitstick R, Carlson GA, Ashe KH, et al. Region-specific dissociation of neuronal loss and neurofibrillary pathology in a mouse model of tauopathy. Am J Pathol. 2006;168:1598–607.
Article CAS PubMed PubMed Central Google Scholar
Xu H, Rösler TW, Carlsson T, de Andrade A, Bruch J, Höllerhage M, et al. Memory deficits correlate with tau and spine pathology in P301S MAPT transgenic mice. Neuropathol Appl Neurobiol. 2014;40:833–43.
Article CAS PubMed Google Scholar
Yue M, Hanna A, Wilson J, Roder H, Janus C. Sex difference in pathology and memory decline in rTg4510 mouse model of tauopathy. Neurobiol Aging. 2011;32:590–603.
Article CAS PubMed Google Scholar
Wenger K, Viode A, Schlaffner CN, van Zalm P, Cheng L, Dellovade T et al. Common mouse models of tauopathy reflect early but not late human disease. Mol Neurodegener. 2023;18.
Santacruz K, Lewis J, Spires T, Paulson J, Kotilinek L, Ingelsson M, et al. Medicine: tau suppression in a neurodegenerative mouse model improves memory function. Sci (80-). 2005;309:476–81.
Hampton DW, Webber DJ, Bilican B, Goedert M, Spillantini MG, Chandran S. Cell-mediated neuroprotection in a mouse model of human tauopathy. J Neurosci. 2010;30:9973–83.
Article CAS PubMed PubMed Central Google Scholar
Salama M, Elhussiny M, Magdy A, Omran AG, Alsayed A, Ashry R, et al. Dual mTORC1/mTORC2 blocker as a possible therapy for tauopathy in cellular model. Metab Brain Dis. 2018;33:583–7.
Article CAS PubMed Google Scholar
Salama M, El-Desouky S, Alsayed A, El-Hussiny M, Magdy K, Fekry E, et al. siRNA blocking of mammalian target of Rapamycin (mTOR) attenuates Pathology in Annonacin-Induced Tauopathy in mice. Neurotox Res. 2019;35:987–92.
Article CAS PubMed Google Scholar
Kwon HS, Koh SH. Neuroinflammation in neurodegenerative disorders: the roles of microglia and astrocytes. Transl Neurodegener. 2020.
Tansey MG, Wallings RL, Houser MC, Herrick MK, Keating CE, Joers V. Inflammation and immune dysfunction in Parkinson disease. Nat Rev Immunol. 2022. p. 657–73.
Zhang W, Xiao D, Mao Q, Xia H. Role of neuroinflammation in neurodegeneration development. Signal Transduct Target Ther. 2023.
Sun Y, Guo Y, Feng X, Jia M, Ai N, Dong Y et al. The behavioural and neuropathologic sexual dimorphism and absence of MIP-3α in tau P301S mouse model of Alzheimer’s disease. J Neuroinflammation. 2020;17.
Macdonald JA, Bronner IF, Drynan L, Fan J, Curry A, Fraser G, et al. Assembly of transgenic human P301S tau is necessary for neurodegeneration in murine spinal cord. Acta Neuropathol Commun. 2019;7:44.
Article PubMed PubMed Central Google Scholar
Perea JR, García E, Vallés-Saiz L, Cuadros R, Hernández F, Bolós M et al. p38 activation occurs mainly in microglia in the P301S tauopathy mouse model. Sci Rep. 2022;12.
Xie J, Zhang Y, Li S, Wei H, Yu H, Zhou Q et al. P301S-hTau acetylates KEAP1 to trigger synaptic toxicity via inhibiting NRF2/ARE pathway: a novel mechanism underlying Htau‐induced synaptic toxicities. Clin Transl Med. 2022;12.
Bellucci A, Bugiani O, Ghetti B, Spillantini MG. Presence of reactive microglia and neuroinflammatory mediators in a case of frontotemporal dementia with P301S mutation. Neurodegener Dis. 2011;8:221–9.
Article PubMed PubMed Central Google Scholar
Bellucci A, Westwood AJ, Ingram E, Casamenti F, Goedert M, Spillantini MG. Induction of inflammatory mediators and microglial activation in mice transgenic for mutant human P301S tau protein. Am J Pathol. 2004;165:1643–52.
Article CAS PubMed PubMed Central Google Scholar
Bruch J, Xu H, Rösler TW, De Andrade A, Kuhn P, Lichtenthaler SF, et al. PERK activation mitigates tau pathology in vitro and in vivo. EMBO Mol Med. 2017;9:371–84.
Article CAS PubMed PubMed Central Google Scholar
Allen B, Ingram E, Takao M, Smith MJ, Jakes R, Virdee K, et al. Abundant tau filaments and nonapoptotic neurodegeneration in transgenic mice expressing human P301s tau protein. J Neurosci. 2002;22:9340–51.
Article CAS PubMed PubMed Central Google Scholar
Morris R. Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods. 1984;11:47–60.
Article CAS PubMed Google Scholar
Morris RGM, Garrud P, Rawlins JNP, O’Keefe J. Place navigation impaired in rats with hippocampal lesions. Nature. 1982;297:681–3.
Article CAS PubMed Google Scholar
Deacon RMJ, Rawlins JNP. T-maze alternation in the rodent. Nat Protoc. 2006;1:7–12.
Fouad S, Elfarrash S, Rizk A, Rezk S, Mosbah E, Saad MA et al. Cerebrolysin recovers diaphragmatic function and reduces injury-associated astrogliosis following a cervical spinal cord hemi-section injury in rats. Egypt J Neurol Psychiatry Neurosurg. 2023;59.
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-∆∆CT method. Methods. 2001;25:402–8.
Article CAS PubMed Google Scholar
Crowe A, Yue W. Semi-quantitative determination of protein expression using immunohistochemistry staining and analysis: an Integrated Protocol. Bio-Protocol. 2019;9.
Takeuchi H, Iba M, Inoue H, Higuchi M, Takao K, Tsukita K et al. P301S mutant human tau transgenic mice manifest early symptoms of human tauopathies with dementia and altered sensorimotor gating. PLoS ONE. 2011;6.
Brigas HC, Ribeiro M, Coelho JE, Gomes R, Gomez-Murcia V, Carvalho K et al. IL-17 triggers the onset of cognitive and synaptic deficits in early stages of Alzheimer’s disease. Cell Rep. 2021;36.
Heikal SA, Fawi G, Moustafa SA, Barakat M, Ragab G, Hegazy MT et al. Serum Alpha-Synuclein and Inammatory Markers prole in an Egyptian Alzheimer’s and Parkinson’s Diseases patients: A Pilot Study. 2024; https://doi.org/10.21203/rs.3.rs-3893418/v1.
Ransohoff RM. How neuroinflammation contributes to neurodegeneration. Science (80-.). 2016. p. 777–83.
Ferreira SA, Romero-Ramos M. Microglia response during Parkinson’s disease: alpha-synuclein intervention. Front Cell Neurosci. 2018;12.
Haukedal H, Freude K. Implications of Microglia in Amyotrophic lateral sclerosis and Frontotemporal Dementia. J Mol Biol. 2019. p. 1818–29.
Guzman-Martinez L, Maccioni RB, Andrade V, Navarrete LP, Pastor MG, Ramos-Escobar N. Neuroinflammation as a common feature of neurodegenerative disorders. Front Pharmacol. 2019.
Parhizkar S, Holtzman DM. APOE mediated neuroinflammation and neurodegeneration in Alzheimer’s disease. Semin Immunol. 2022.
Ramsey CP, Glass CA, Montgomery MB, Lindl KA, Ritson GP, Chia LA, et al. Expression of Nrf2 in neurodegenerative diseases. J Neuropathol Exp Neurol. 2007;66:75–85.
Article CAS PubMed Google Scholar
Rojo AI, Pajares M, Rada P, Nuñez A, Nevado-Holgado AJ, Killik R, et al. NRF2 deficiency replicates transcriptomic changes in Alzheimer’s patients and worsens APP and TAU pathology. Redox Biol. 2017;13:444–51.
Article CAS PubMed PubMed Central Google Scholar
Zhang H, Davies KJA, Forman HJ. Oxidative stress response and Nrf2 signaling in aging. Free Radic Biol Med. 2015.
Yang Y, Jiang S, Yan J, Li Y, Xin Z, Lin Y et al. An overview of the molecular mechanisms and novel roles of Nrf2 in neurodegenerative disorders. Cytokine Growth Factor Rev. 2015.
Volonte D, Liu Z, Musille PM, Stoppani E, Wakabayashi N, Di YP et al. Inhibition of nuclear factor-erythroid 2-related factor (Nrf2) by caveolin-1 promotes stress-induced premature senescence. Mol Biol Cell. 2013.
Tarantini S, Valcarcel-Ares MN, Yabluchanskiy A, Tucsek Z, Hertelendy P, Kiss T, et al. Nrf2 Deficiency exacerbates obesity-Induced oxidative stress, neurovascular dysfunction, blood-brain barrier disruption, Neuroinflammation, Amyloidogenic Gene expression, and Cognitive decline in mice, mimicking the aging phenotype. Journals Gerontol - Ser Biol Sci Med Sci. 2018;73:853–63.
Joshi G, Gan KA, Johnson DA, Johnson JA. Increased Alzheimer’s disease-like pathology in the APP/ PS1δE9 mouse model lacking Nrf2 through modulation of autophagy. Neurobiol Aging. 2015;36:664–79.
Article CAS PubMed Google Scholar
Syapin PJ. Regulation of haeme oxygenase-1 for treatment of neuroinflammation and brain disorders. Br J Pharmacol. 2008. p. 623–40.
Jazwa A, Cuadrado A. Targeting Heme Oxygenase-1 for Neuroprotection and Neuroinflammation in neurodegenerative diseases. Curr Drug Targets. 2012;11:1517–31.
留言 (0)