National Cancer Institute, DCCPS, Surveillance Research Program. (2020). Surveillance, Epidemiology, and End Results Program: SEER Cancer Stat Facts: Childhood leukemia (ages 0–19). https://seer.cancer.gov/statfacts/html/childleuk.html. Accessed 14 Feb 2024.
Bhojwani, D., & Pui, C.-H. (2013). Relapsed childhood acute lymphoblastic leukaemia. The Lancet Oncology, 14(6), e205–e217. https://doi.org/10.1016/S1470-2045(12)70580-6
Terwilliger, T., & Abdul-Hay, M. (2017). Acute lymphoblastic leukemia: A comprehensive review and 2017 update. Blood Cancer Journal, 7(6), e577–e577. https://doi.org/10.1038/bcj.2017.53
Article CAS PubMed PubMed Central Google Scholar
Sun, W., Malvar, J., Sposto, R., Verma, A., Wilkes, J. J., Dennis, R., et al. (2018). Outcome of children with multiply relapsed B-cell acute lymphoblastic leukemia: A therapeutic advances in childhood leukemia & lymphoma study. Leukemia, 32(11), 2316–2325. https://doi.org/10.1038/s41375-018-0094-0
Article PubMed PubMed Central Google Scholar
Pui, C. H., Carroll, W. L., Meshinchi, S., & Arceci, R. J. (2011). Biology, risk stratification, and therapy of pediatric acute leukemias: An update. Journal of Clinical Oncology, 29(5), 551–565. https://doi.org/10.1200/jco.2010.30.7405
Locatelli, F., Zugmaier, G., Rizzari, C., Morris, J. D., Gruhn, B., Klingebiel, T., et al. (2021). Effect of blinatumomab vs chemotherapy on event-free survival among children with high-risk first-relapse B-cell acute lymphoblastic leukemia: A randomized clinical trial. JAMA, 325(9), 843–854. https://doi.org/10.1001/jama.2021.0987
Article CAS PubMed PubMed Central Google Scholar
O’Brien, M. M., Ji, L., Shah, N. N., Rheingold, S. R., Bhojwani, D., Yuan, C. M., et al. (2022). Phase II trial of inotuzumab ozogamicin in children and adolescents with relapsed or refractory B-cell acute lymphoblastic leukemia: Children’s Oncology Group Protocol AALL1621. Journal of Clinical Oncology, 40(9), 956–967. https://doi.org/10.1200/jco.21.01693
Article CAS PubMed PubMed Central Google Scholar
Maude, S. L., Laetsch, T. W., Buechner, J., Rives, S., Boyer, M., Bittencourt, H., et al. (2018). Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. New England Journal of Medicine, 378(5), 439–448. https://doi.org/10.1056/NEJMoa1709866
Article CAS PubMed Google Scholar
Mullighan, C. G., Zhang, J., Kasper, L. H., Lerach, S., Payne-Turner, D., Phillips, L. A., et al. (2011). CREBBP mutations in relapsed acute lymphoblastic leukaemia. Nature, 471(7337), 235–239. https://doi.org/10.1038/nature09727
Article CAS PubMed PubMed Central Google Scholar
Ma, X., Edmonson, M., Yergeau, D., Muzny, D. M., Hampton, O. A., Rusch, M., et al. (2015). Rise and fall of subclones from diagnosis to relapse in pediatric B-acute lymphoblastic leukaemia. Nature Communications, 6, 6604. https://doi.org/10.1038/ncomms7604
Article CAS PubMed Google Scholar
Klumper, E., Pieters, R., Veerman, A. J., Huismans, D. R., Loonen, A. H., Hählen, K., et al. (1995). In vitro cellular drug resistance in children with relapsed/refractory acute lymphoblastic leukemia. Blood, 86(10), 3861–3868. https://doi.org/10.1182/blood.V86.10.3861.bloodjournal86103861
Article CAS PubMed Google Scholar
Gottlieb, A. J., Weinberg, V., Ellison, R. R., Henderson, E. S., Terebelo, H., Rafla, S., et al. (1984). Efficacy of daunorubicin in the therapy of adult acute lymphocytic leukemia: A prospective randomized trial by cancer and leukemia group B. Blood, 64(1), 267–274. https://doi.org/10.1182/blood.V64.1.267.267
Article CAS PubMed Google Scholar
Cooper, S. L., & Brown, P. A. (2015). Treatment of pediatric acute lymphoblastic leukemia. Pediatric Clinics of North America, 62(1), 61–73. https://doi.org/10.1016/j.pcl.2014.09.006
Silverman, L. B., Stevenson, K. E., O’Brien, J. E., Asselin, B. L., Barr, R. D., Clavell, L., et al. (2010). Long-term results of Dana-Farber Cancer Institute ALL Consortium protocols for children with newly diagnosed acute lymphoblastic leukemia (1985–2000). Leukemia, 24(2), 320–334. https://doi.org/10.1038/leu.2009.253
Article CAS PubMed Google Scholar
Pui, C. H., Pei, D., Sandlund, J. T., Ribeiro, R. C., Rubnitz, J. E., Raimondi, S. C., et al. (2010). Long-term results of St Jude Total Therapy Studies 11, 12, 13A, 13B, and 14 for childhood acute lymphoblastic leukemia. Leukemia, 24(2), 371–382. https://doi.org/10.1038/leu.2009.252
Article CAS PubMed Google Scholar
Malempati, S., Gaynon, P. S., Sather, H., La, M. K., & Stork, L. C. (2007). Outcome after relapse among children with standard-risk acute lymphoblastic leukemia: Children’s Oncology Group study CCG-1952. Journal of Clinical Oncology, 25(36), 5800–5807. https://doi.org/10.1200/jco.2007.10.7508
Meyer, J. A., Wang, J., Hogan, L. E., Yang, J. J., Dandekar, S., Patel, J. P., et al. (2013). Relapse-specific mutations in NT5C2 in childhood acute lymphoblastic leukemia. Nature Genetics, 45(3), 290–294. https://doi.org/10.1038/ng.2558
Article CAS PubMed PubMed Central Google Scholar
Jansen, G., Mauritz, R., Drori, S., Sprecher, H., Kathmann, I., Bunni, M., et al. (1998). A structurally altered human reduced folate carrier with increased folic acid transport mediates a novel mechanism of antifolate resistance. Journal of Biological Chemistry, 273(46), 30189–30198. https://doi.org/10.1074/jbc.273.46.30189
Article CAS PubMed Google Scholar
Mosow, J. A. (1998). Methotrexate transport and resistance. Leukemia & Lymphoma, 30(3–4), 215–224. https://doi.org/10.3109/10428199809057535
Mudry, R. E., Fortney, J. E., York, T., Hall, B. M., & Gibson, L. F. (2000). Stromal cells regulate survival of B-lineage leukemic cells during chemotherapy. Blood, 96(5), 1926–1932. https://doi.org/10.1182/blood.V96.5.1926
Article CAS PubMed Google Scholar
Yang, J. J., Bhojwani, D., Yang, W., Cai, X., Stocco, G., Crews, K., et al. (2008). Genome-wide copy number profiling reveals molecular evolution from diagnosis to relapse in childhood acute lymphoblastic leukemia. Blood, 112(10), 4178–4183. https://doi.org/10.1182/blood-2008-06-165027
Article CAS PubMed PubMed Central Google Scholar
Anderson, D., Skut, P., Hughes, A. M., Ferrari, E., Tickner, J., Xu, J., et al. (2020). The bone marrow microenvironment of pre-B acute lymphoblastic leukemia at single-cell resolution. Scientific Reports, 10(1), 19173. https://doi.org/10.1038/s41598-020-76157-4
Article CAS PubMed PubMed Central Google Scholar
Méndez-Ferrer, S., Bonnet, D., Steensma, D. P., Hasserjian, R. P., Ghobrial, I. M., Gribben, J. G., et al. (2020). Bone marrow niches in haematological malignancies. Nature Reviews Cancer, 20(5), 285–298. https://doi.org/10.1038/s41568-020-0245-2
Article CAS PubMed PubMed Central Google Scholar
Dander, E., Palmi, C., D'Amico, G., & Cazzaniga, G. (2021). The bone marrow niche in B-cell acute lymphoblastic leukemia: The role of microenvironment from pre-leukemia to overt leukemia. International Journal of Molecular Sciences, 22(9). https://doi.org/10.3390/ijms22094426
Gao, Q., Wang, L., Wang, S., Huang, B., Jing, Y., & Su, J. (2022). Bone marrow mesenchymal stromal cells: Identification, classification, and differentiation. Frontiers in Cell and Developmental Biology, 9, 787118–787118. https://doi.org/10.3389/fcell.2021.787118
Article PubMed PubMed Central Google Scholar
Li, J.-H., Fan, W.-S., Wang, M.-M., Wang, Y.-H., & Ren, Z.-G. (2018). Effects of mesenchymal stem cells on solid tumor metastasis in experimental cancer models: A systematic review and meta-analysis. Journal of Translational Medicine, 16(1), 113. https://doi.org/10.1186/s12967-018-1484-9
Article CAS PubMed PubMed Central Google Scholar
Ramuta, T., & Kreft, M. E. (2022). Mesenchymal stem/stromal cells may decrease success of cancer treatment by inducing resistance to chemotherapy in cancer cells. Cancers 14(15). https://doi.org/10.3390/cancers14153761
Fallati, A., Di Marzo, N., D'Amico, G., & Dander, E. (2022). Mesenchymal stromal cells (MSCs): An ally of B-cell acute lymphoblastic leukemia (B-ALL) cells in disease maintenance and progression within the bone marrow hematopoietic niche. Cancers, 14(14). https://doi.org/10.3390/cancers14143303
Miari, K. E., & Williams, M. T. S. (2023). Stromal bone marrow fibroblasts and mesenchymal stem cells support acute myeloid leukaemia cells and promote therapy resistance. British Journal of Pharmacology. https://doi.org/10.1111/bph.16028
留言 (0)