The LDL cumulative exposure hypothesis: evidence and practical applications

Khan, M. A. et al. Global epidemiology of ischemic heart disease: results from the Global Burden of Disease Study. Cureus 12, e9349 (2020).

PubMed  PubMed Central  Google Scholar 

Marchand, F. Ueber atherosclerosis. Verhandlungen der Kongresse fuer Innere Medizin. 21 Kongresse (1904).

Ignatowski, A. I. Ueber die Wirkung der tierschen Einweisse auf der Aorta. Virchows Arch. Pathol. Anat. 198, 248 (1909).

Article  Google Scholar 

Windaus, A. Ueber der Gehalt normaler und atheromatoser Aorten an Cholesterol und Cholesterinester. Z. Physiol. Chem. 67, 174 (1910).

Article  Google Scholar 

Anitschkow, N. & Chalatow, S. Ueber experimentelle Cholester-insteatose und ihre Bedeutung fuer die Entstehung einiger pathologischer Prozesse. Zentrbl Allg. Pathol. Pathol. Anat. 24, 1–9 (1913).

Google Scholar 

Brown, M. S. & Goldstein, J. L. A receptor-mediated pathway for cholesterol homeostasis. Science 232, 34–47 (1986).

Article  CAS  PubMed  Google Scholar 

Goldstein, J. L. & Brown, M. S. A century of cholesterol and coronaries: from plaques to genes to statins. Cell 161, 161–172 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Williams, K. J. & Tabas, I. The response-to-retention hypothesis of early atherogenesis. Arterioscler. Thromb. Vasc. Biol. 15, 551–561 (1995).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Boren, J. et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease: pathophysiological, genetic, and therapeutic insights: a consensus statement from the European Atherosclerosis Society Consensus Panel. Eur. Heart J. 41, 2313–2330 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ference, B. A. et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur. Heart J. 38, 2459–2472 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ference, B. A., Graham, I., Tokgozoglu, L. & Catapano, A. L. Impact of lipids on cardiovascular health: JACC Health Promotion Series. J. Am. Coll. Cardiol. 72, 1141–1156 (2018).

Article  CAS  PubMed  Google Scholar 

Baigent, C. et al. Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet 366, 1267–1278 (2005).

Article  CAS  PubMed  Google Scholar 

Baigent, C. et al. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet 376, 1670–1681 (2010).

Article  CAS  PubMed  Google Scholar 

Collins, R. et al. Interpretation of the evidence for the efficacy and safety of statin therapy. Lancet 388, 2532–2561 (2016).

Article  CAS  PubMed  Google Scholar 

Silverman, M. G. et al. Association between lowering LDL-C and cardiovascular risk reduction among different therapeutic interventions: a systematic review and meta-analysis. JAMA 316, 1289–1297 (2016).

Article  CAS  PubMed  Google Scholar 

Nicholls, S. J. et al. Effect of two intensive statin regimens on progression of coronary disease. N. Engl. J. Med. 365, 2078–2087 (2011).

Article  CAS  PubMed  Google Scholar 

Cohen, J. C., Boerwinkle, E., Mosley, T. H. Jr & Hobbs, H. H. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N. Engl. J. Med. 354, 1264–1272 (2006).

Article  CAS  PubMed  Google Scholar 

Ference, B. A. et al. Effect of long-term exposure to lower low-density lipoprotein cholesterol beginning early in life on the risk of coronary heart disease: a Mendelian randomization analysis. J. Am. Coll. Cardiol. 60, 2631–2639 (2012).

Article  CAS  PubMed  Google Scholar 

Braunwald, E. How to live to 100 before developing clinical coronary artery disease: a suggestion. Eur. Heart J. 43, 249–250 (2021).

Article  Google Scholar 

Ference, B. A., Ference, T. B., Catapano, A. L., Nicholls, S. J. & Ray, K. K. A naturally randomized trial evaluating a vaccine-like strategy to lower LDL by inhibiting PCSK9 on the lifetime risk of major cardiovascular events (NATURE-PCSK9). Preprint at Medrxiv https://doi.org/10.1101/2024.06.30.24309740 (2024).

Friedewald, W. T., Levy, R. I. & Fredrickson, D. S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 18, 499–502 (1972).

Article  CAS  PubMed  Google Scholar 

Sniderman, A. D. et al. Apolipoprotein B particles and cardiovascular disease: a narrative review. JAMA Cardiol. 4, 1287–1295 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Ference, B. A., Kastelein, J. J. P. & Catapano, A. L. Lipids and lipoproteins in 2020. JAMA 324, 595–596 (2020).

Article  PubMed  Google Scholar 

Stender, S. & Zilversmit, D. B. Transfer of plasma lipoprotein components and of plasma proteins into aortas of cholesterol-fed rabbits. Molecular size as a determinant of plasma lipoprotein influx. Arteriosclerosis 1, 38–49 (1981).

Article  CAS  PubMed  Google Scholar 

Zanoni, P., Velagapudi, S., Yalcinkaya, M., Rohrer, L. & von Eckardstein, A. Endocytosis of lipoproteins. Atherosclerosis 275, 273–295 (2018).

Article  CAS  PubMed  Google Scholar 

Camejo, G., Lalaguna, F., Lopez, F. & Starosta, R. Characterization and properties of a lipoprotein-complexing proteoglycan from human aorta. Atherosclerosis 35, 307–320 (1980).

Article  CAS  PubMed  Google Scholar 

Camejo, G., Hurt-Camejo, E., Wiklund, O. & Bondjers, G. Association of apo B lipoproteins with arterial proteoglycans: pathological significance and molecular basis. Atherosclerosis 139, 205–222 (1998).

Article  CAS  PubMed  Google Scholar 

Boren, J. et al. Identification of the principal proteoglycan-binding site in LDL. A single-point mutation in apo-B100 severely affects proteoglycan interaction without affecting LDL receptor binding. J. Clin. Invest. 101, 2658–2664 (1998).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Skalen, K. et al. Subendothelial retention of atherogenic lipoproteins in early atherosclerosis. Nature 417, 750–754 (2002).

Article  CAS  PubMed  Google Scholar 

Tabas, I., Williams, K. J. & Boren, J. Subendothelial lipoprotein retention as the initiating process in atherosclerosis: update and therapeutic implications. Circulation 116, 1832–1844 (2007).

Article  CAS  PubMed  Google Scholar 

Tabas, I. Consequences of cellular cholesterol accumulation: basic concepts and physiological implications. J. Clin. Invest. 110, 905–911 (2002).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Moore, K. J. & Tabas, I. Macrophages in the pathogenesis of atherosclerosis. Cell 145, 341–355 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Libby, P. Inflammation in atherosclerosis. Nature 420, 868–874 (2002).

Article  CAS  PubMed  Google Scholar 

Ambrose, J. A. et al. Angiographic progression of coronary artery disease and the development of myocardial infarction. J. Am. Coll. Cardiol. 12

留言 (0)

沒有登入
gif