Functional control of myosin motors in the cardiac cycle

Bottinelli, R. & Reggiani, C. Human skeletal muscle fibres: molecular and functional diversity. Prog. Biophys. Mol. Biol. 73, 195–262 (2000).

Article  CAS  PubMed  Google Scholar 

Stehle, R. & Iorga, B. Kinetics of cardiac sarcomeric processes and rate-limiting steps in contraction and relaxation. J. Mol. Cell Cardiol. 48, 843–850 (2010).

Article  CAS  PubMed  Google Scholar 

Kawana, M., Spudich, J. A. & Ruppel, K. M. Hypertrophic cardiomyopathy: mutations to mechanisms to therapies. Front. Physiol. 13, 975076 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Keyt, L. K. et al. Thin filament cardiomyopathies: a review of genetics, disease mechanisms, and emerging therapeutics. Front. Cardiovasc. Med. 9, 972301 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lehman, S. J., Crocini, C. & Leinwand, L. A. Targeting the sarcomere in inherited cardiomyopathies. Nat. Rev. Cardiol. 19, 353–363 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Nag, S., Gollapudi, S. K., Del Rio, C. L., Spudich, J. A. & McDowell, R. Mavacamten, a precision medicine for hypertrophic cardiomyopathy: from a motor protein to patients. Sci. Adv. 9, eabo7622 (2023).

Article  CAS  PubMed  Google Scholar 

Walklate, J. et al. Alpha and beta myosin isoforms and human atrial and ventricular contraction. Cell Mol. Life Sci. 78, 7309–7337 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sonnenblick, E. H. Correlation of myocardial ultrastructure and function. Circulation 38, 29–44 (1968).

Article  CAS  PubMed  Google Scholar 

LeWinter, M. M. & Granzier, H. Cardiac titin: a multifunctional giant. Circulation 121, 2137–2145 (2010).

Article  PubMed  PubMed Central  Google Scholar 

Squire, J. M. The Structural Basis of Muscle Contraction (Plenum Press, 1981).

Katz, A. M. Physiology of the Heart 5th edn (Lippincott Williams & Wilkins, 2011).

Buckberg, G. D., Hoffman, J. I., Coghlan, H. C. & Nanda, N. C. Ventricular structure-function relations in health and disease: part I. The normal heart. Eur. J. Cardiothorac. Surg. 47, 587–601 (2015).

Article  PubMed  Google Scholar 

Mirsky, I. Left ventricular stresses in the intact human heart. Biophys. J. 9, 189–208 (1969).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhong, L., Ghista, D. N. & Tan, R. S. Left ventricular wall stress compendium. Comput. Methods Biomech. Biomed. Eng. 15, 1015–1041 (2012).

Article  CAS  Google Scholar 

Chirinos, J. A. et al. Early and late systolic wall stress differentially relate to myocardial contraction and relaxation in middle-aged adults: the Asklepios study. Hypertension 61, 296–303 (2013).

Article  CAS  PubMed  Google Scholar 

Gu, H. et al. Reduced first-phase ejection fraction and sustained myocardial wall stress in hypertensive patients with diastolic dysfunction: a manifestation of impaired shortening deactivation that links systolic to diastolic dysfunction and preserves systolic ejection fraction. Hypertension 69, 633–640 (2017).

Article  CAS  PubMed  Google Scholar 

Brunello, E. et al. Myosin filament-based regulation of the dynamics of contraction in heart muscle. Proc. Natl Acad. Sci. USA 117, 8177–8186 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sonnenblick, E. H., Parmley, W. W., Buccino, R. A. & Spann, J. F. Jr. Maximum force development in cardiac muscle. Nature 219, 1056–1058 (1968).

Article  CAS  PubMed  Google Scholar 

Hodt, A. et al. Regional LV deformation in healthy individuals during isovolumetric contraction and ejection phases assessed by 2D speckle tracking echocardiography. Clin. Physiol. Funct. Imaging 32, 372–379 (2012).

Article  PubMed  Google Scholar 

Rodriguez, E. K. et al. A method to reconstruct myocardial sarcomere lengths and orientations at transmural sites in beating canine hearts. Am. J. Physiol. 263, H293–H306 (1992).

CAS  PubMed  Google Scholar 

Kobirumaki-Shimozawa, F. et al. Nano-imaging of the beating mouse heart in vivo: importance of sarcomere dynamics, as opposed to sarcomere length per se, in the regulation of cardiac function. J. Gen. Physiol. 147, 53–62 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bers, D. M. Cardiac excitation-contraction coupling. Nature 415, 198–205 (2002).

Article  CAS  PubMed  Google Scholar 

Tobacman, L. S. Thin filament-mediated regulation of cardiac contraction. Annu. Rev. Physiol. 58, 447–481 (1996).

Article  CAS  PubMed  Google Scholar 

Yamada, Y., Namba, K. & Fujii, T. Cardiac muscle thin filament structures reveal calcium regulatory mechanism. Nat. Commun. 11, 153 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Risi, C. M. et al. Troponin structural dynamics in the native cardiac thin filament revealed by cryo electron microscopy. J. Mol. Biol. 436, 168498 (2024).

Article  CAS  PubMed  Google Scholar 

Maier, L. S. et al. Ca2+ handling in isolated human atrial myocardium. Am. J. Physiol. Heart Circ. Physiol. 279, H952–H958 (2000).

Article  CAS  PubMed  Google Scholar 

Pieske, B. et al. Diminished post-rest potentiation of contractile force in human dilated cardiomyopathy. Functional evidence for alterations in intracellular Ca2+ handling. J. Clin. Invest. 98, 764–776 (1996).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Todaka, K., Ogino, K., Gu, A. & Burkhoff, D. Effect of ventricular stretch on contractile strength, calcium transient, and cAMP in intact canine hearts. Am. J. Physiol. 274, H990–1000 (1998).

CAS  PubMed  Google Scholar 

MacGowan, G. A., Kirk, J. A., Evans, C. & Shroff, S. G. Pressure-calcium relationships in perfused mouse hearts. Am. J. Physiol. Heart Circ. Physiol. 290, H2614–H2624 (2006).

Article  CAS  PubMed  Google Scholar 

Janssen, P. M. & de Tombe, P. P. Uncontrolled sarcomere shortening increases intracellular Ca2+ transient in rat cardiac trabeculae. Am. J. Physiol. 272, H1892–H1897 (1997).

CAS  PubMed  Google Scholar 

Monasky, M. M., Varian, K. D., Davis, J. P. & Janssen, P. M. Dissociation of force decline from calcium decline by preload in isolated rabbit myocardium. Pflug. Arch. Eur. J. Physiol. 456, 267–276 (2008).

Article  CAS  Google Scholar 

Mashali, M. A. et al. Impact of etiology on force and kinetics of left ventricular end-stage failing human myocardium. J. Mol. Cell Cardiol. 156, 7–19 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Caremani, M. et al. Size and speed of the working stroke of cardiac myosin in situ. Proc. Natl Acad. Sci. USA 113, 3675–3680 (2016).

Article  CAS  PubMed 

留言 (0)

沒有登入
gif