Bottinelli, R. & Reggiani, C. Human skeletal muscle fibres: molecular and functional diversity. Prog. Biophys. Mol. Biol. 73, 195–262 (2000).
Article CAS PubMed Google Scholar
Stehle, R. & Iorga, B. Kinetics of cardiac sarcomeric processes and rate-limiting steps in contraction and relaxation. J. Mol. Cell Cardiol. 48, 843–850 (2010).
Article CAS PubMed Google Scholar
Kawana, M., Spudich, J. A. & Ruppel, K. M. Hypertrophic cardiomyopathy: mutations to mechanisms to therapies. Front. Physiol. 13, 975076 (2022).
Article PubMed PubMed Central Google Scholar
Keyt, L. K. et al. Thin filament cardiomyopathies: a review of genetics, disease mechanisms, and emerging therapeutics. Front. Cardiovasc. Med. 9, 972301 (2022).
Article CAS PubMed PubMed Central Google Scholar
Lehman, S. J., Crocini, C. & Leinwand, L. A. Targeting the sarcomere in inherited cardiomyopathies. Nat. Rev. Cardiol. 19, 353–363 (2022).
Article PubMed PubMed Central Google Scholar
Nag, S., Gollapudi, S. K., Del Rio, C. L., Spudich, J. A. & McDowell, R. Mavacamten, a precision medicine for hypertrophic cardiomyopathy: from a motor protein to patients. Sci. Adv. 9, eabo7622 (2023).
Article CAS PubMed Google Scholar
Walklate, J. et al. Alpha and beta myosin isoforms and human atrial and ventricular contraction. Cell Mol. Life Sci. 78, 7309–7337 (2021).
Article CAS PubMed PubMed Central Google Scholar
Sonnenblick, E. H. Correlation of myocardial ultrastructure and function. Circulation 38, 29–44 (1968).
Article CAS PubMed Google Scholar
LeWinter, M. M. & Granzier, H. Cardiac titin: a multifunctional giant. Circulation 121, 2137–2145 (2010).
Article PubMed PubMed Central Google Scholar
Squire, J. M. The Structural Basis of Muscle Contraction (Plenum Press, 1981).
Katz, A. M. Physiology of the Heart 5th edn (Lippincott Williams & Wilkins, 2011).
Buckberg, G. D., Hoffman, J. I., Coghlan, H. C. & Nanda, N. C. Ventricular structure-function relations in health and disease: part I. The normal heart. Eur. J. Cardiothorac. Surg. 47, 587–601 (2015).
Mirsky, I. Left ventricular stresses in the intact human heart. Biophys. J. 9, 189–208 (1969).
Article CAS PubMed PubMed Central Google Scholar
Zhong, L., Ghista, D. N. & Tan, R. S. Left ventricular wall stress compendium. Comput. Methods Biomech. Biomed. Eng. 15, 1015–1041 (2012).
Chirinos, J. A. et al. Early and late systolic wall stress differentially relate to myocardial contraction and relaxation in middle-aged adults: the Asklepios study. Hypertension 61, 296–303 (2013).
Article CAS PubMed Google Scholar
Gu, H. et al. Reduced first-phase ejection fraction and sustained myocardial wall stress in hypertensive patients with diastolic dysfunction: a manifestation of impaired shortening deactivation that links systolic to diastolic dysfunction and preserves systolic ejection fraction. Hypertension 69, 633–640 (2017).
Article CAS PubMed Google Scholar
Brunello, E. et al. Myosin filament-based regulation of the dynamics of contraction in heart muscle. Proc. Natl Acad. Sci. USA 117, 8177–8186 (2020).
Article CAS PubMed PubMed Central Google Scholar
Sonnenblick, E. H., Parmley, W. W., Buccino, R. A. & Spann, J. F. Jr. Maximum force development in cardiac muscle. Nature 219, 1056–1058 (1968).
Article CAS PubMed Google Scholar
Hodt, A. et al. Regional LV deformation in healthy individuals during isovolumetric contraction and ejection phases assessed by 2D speckle tracking echocardiography. Clin. Physiol. Funct. Imaging 32, 372–379 (2012).
Rodriguez, E. K. et al. A method to reconstruct myocardial sarcomere lengths and orientations at transmural sites in beating canine hearts. Am. J. Physiol. 263, H293–H306 (1992).
Kobirumaki-Shimozawa, F. et al. Nano-imaging of the beating mouse heart in vivo: importance of sarcomere dynamics, as opposed to sarcomere length per se, in the regulation of cardiac function. J. Gen. Physiol. 147, 53–62 (2016).
Article CAS PubMed PubMed Central Google Scholar
Bers, D. M. Cardiac excitation-contraction coupling. Nature 415, 198–205 (2002).
Article CAS PubMed Google Scholar
Tobacman, L. S. Thin filament-mediated regulation of cardiac contraction. Annu. Rev. Physiol. 58, 447–481 (1996).
Article CAS PubMed Google Scholar
Yamada, Y., Namba, K. & Fujii, T. Cardiac muscle thin filament structures reveal calcium regulatory mechanism. Nat. Commun. 11, 153 (2020).
Article CAS PubMed PubMed Central Google Scholar
Risi, C. M. et al. Troponin structural dynamics in the native cardiac thin filament revealed by cryo electron microscopy. J. Mol. Biol. 436, 168498 (2024).
Article CAS PubMed Google Scholar
Maier, L. S. et al. Ca2+ handling in isolated human atrial myocardium. Am. J. Physiol. Heart Circ. Physiol. 279, H952–H958 (2000).
Article CAS PubMed Google Scholar
Pieske, B. et al. Diminished post-rest potentiation of contractile force in human dilated cardiomyopathy. Functional evidence for alterations in intracellular Ca2+ handling. J. Clin. Invest. 98, 764–776 (1996).
Article CAS PubMed PubMed Central Google Scholar
Todaka, K., Ogino, K., Gu, A. & Burkhoff, D. Effect of ventricular stretch on contractile strength, calcium transient, and cAMP in intact canine hearts. Am. J. Physiol. 274, H990–1000 (1998).
MacGowan, G. A., Kirk, J. A., Evans, C. & Shroff, S. G. Pressure-calcium relationships in perfused mouse hearts. Am. J. Physiol. Heart Circ. Physiol. 290, H2614–H2624 (2006).
Article CAS PubMed Google Scholar
Janssen, P. M. & de Tombe, P. P. Uncontrolled sarcomere shortening increases intracellular Ca2+ transient in rat cardiac trabeculae. Am. J. Physiol. 272, H1892–H1897 (1997).
Monasky, M. M., Varian, K. D., Davis, J. P. & Janssen, P. M. Dissociation of force decline from calcium decline by preload in isolated rabbit myocardium. Pflug. Arch. Eur. J. Physiol. 456, 267–276 (2008).
Mashali, M. A. et al. Impact of etiology on force and kinetics of left ventricular end-stage failing human myocardium. J. Mol. Cell Cardiol. 156, 7–19 (2021).
Article CAS PubMed PubMed Central Google Scholar
Caremani, M. et al. Size and speed of the working stroke of cardiac myosin in situ. Proc. Natl Acad. Sci. USA 113, 3675–3680 (2016).
留言 (0)