Crosstalk between gut–brain axis: unveiling the mysteries of gut ROS in progression of Parkinson’s disease

Abdel-Sattar E, Mahrous EA, Thabet MM et al (2021) Methanolic extracts of a selected Egyptian Vicia faba cultivar mitigate the oxidative/inflammatory burden and afford neuroprotection in a mouse model of Parkinson’s disease. Inflammopharmacology 291:221–235. https://doi.org/10.1016/j.neurobiolaging.2008.11.001

Article  CAS  Google Scholar 

Ahmed S, El-Sayed MM, Kandeil MA et al (2022) Empagliflozin attenuates neurodegeneration through antioxidant, anti-inflammatory, and modulation of α-synuclein and Parkin levels in rotenone-induced Parkinson’s disease in rats. Saudi Pharm J 306:863–873. https://doi.org/10.1016/j.jsps.2022.03.005

Article  CAS  Google Scholar 

Alghamdi AM, Al-Abbasi FA, AlGhamdi SA et al (2023) Rosinidin inhibits NF-κB/Nrf2/caspase-3 expression and restores neurotransmitter levels in rotenone-activated Parkinson’s disease. Saudi J Biol Sci 306:103656. https://doi.org/10.1016/j.sjbs.2023.103656

Article  CAS  Google Scholar 

Alharthy KM, Althurwi HN, Albaqami FF et al (2023) barbigerone potentially alleviates rotenone-activated Parkinson’s disease in a rodent model by reducing oxidative stress and neuroinflammatory cytokines. ACS Omega 85:4608–4615. https://doi.org/10.1021/acsomega.2c05837

Article  CAS  Google Scholar 

Al-Wandi A, Ninkina N, Millership S et al (2010) Absence of α-synuclein affects dopamine metabolism and synaptic markers in the striatum of aging mice. Neurobiol Aging 315:796–804. https://doi.org/10.1016/j.neurobiolaging.2008.11.001

Article  CAS  Google Scholar 

Alzarea SI, Afzal M, Alharbi KS et al (2022) Hibiscetin attenuates oxidative, nitrative stress and neuroinflammation via suppression of TNF-? signaling in rotenone induced parkinsonism in rats. Saudi Pharm J 3012:1710–1717. https://doi.org/10.1016/j.jsps.2022.09.016

Article  CAS  Google Scholar 

Aoyama K (2021) Glutathione in the brain. Int J Mol Sci 229:5010. https://doi.org/10.3390/ijms22095010

Article  CAS  Google Scholar 

Aziz Q, Ruffle JK (2018) The neurobiology of gut feelings. In: Manos T and Helena DP (eds) The Interoceptive Mind: From Homeostasis to Awareness (Oxford, 2018; online edn, Oxford Academic, 22 Nov. 2018), https://doi.org/10.1093/oso/9780198811930.003.0005

Chapter  Google Scholar 

Bach Knudsen KE, Lærke HN, Hedemann MS et al (2018) Impact of diet-modulated butyrate production on intestinal barrier function and inflammation. Nutrients 1010:1499. https://doi.org/10.3390/nu10101499

Article  CAS  Google Scholar 

Bai XL, Luo YJ, Fan WQ et al (2023) Neuroprotective effects of Lycium barbarum fruit extract on pink 1 (B9) Drosophila melanogaster genetic model of Parkinson’s disease. Plant Foods Hum Nutr 78(1):68–75. https://doi.org/10.1007/s11130-022-01016-8

Article  CAS  PubMed  Google Scholar 

Baizabal-Carvallo JF, Alonso-Juarez M (2020) The link between gut dysbiosis and neuroinflammation in Parkinson’s disease. Neuroscience 432:160–173

Article  CAS  PubMed  Google Scholar 

Benskey MJ, Perez RG, Manfredsson FP (2016) The contribution of alpha synuclein to neuronal survival and function—implications for Parkinson’s disease. J Neurochem 1373:331–359. https://doi.org/10.1111/jnc.13570

Article  CAS  Google Scholar 

Bhratee A, Kumar M, Alam MR et al (2023) Understanding Alzheimer’s disease by targeting gut microbiota and role of heavy metals: insight from novel therapeutical approach. Curr Pharmacol Rep. https://doi.org/10.1007/s40495-023-00325-z

Article  Google Scholar 

Bisht R, Joshi BC, Kalia AN et al (2017) Antioxidant-rich fraction of Urtica dioica mediated rescue of striatal mito-oxidative damage in MPTP-induced behavioral, cellular, and neurochemical alterations in rats. Mol Neurobiol 54:5632–5645. https://doi.org/10.1007/s12035-016-0084-z

Article  CAS  PubMed  Google Scholar 

Brandes RP, Weissmann N, Schröder K (2014) Nox family NADPH oxidases: molecular mechanisms of activation. Free Radic Biol Med 76:208–226. https://doi.org/10.1016/j.freeradbiomed.2014.07.046

Article  CAS  PubMed  Google Scholar 

Butler B, Sambo D, Khoshbouei H (2017) Alpha-synuclein modulates dopamine neurotransmission. J Chem Neuroanat 83:41–49

Article  PubMed  Google Scholar 

Campolo M, Casili G, Biundo F et al (2017) The neuroprotective effect of dimethyl fumarate in an MPTP-mouse model of Parkinson’s disease: involvement of reactive oxygen species/nuclear factor-κB/nuclear transcription factor related to NF-E2. Antioxid Redox Signal 278:453–471. https://doi.org/10.1089/ars.2016.6800

Article  CAS  Google Scholar 

Chandra R, Hiniker A, Kuo Y-M et al (2017) α-Synuclein in gut endocrine cells and its implications for Parkinson’s disease. JCI Insight. https://doi.org/10.1172/jci.insight.92295

Article  PubMed  PubMed Central  Google Scholar 

Chang HC, Liu KF, Teng CJ et al (2019) Sophora tomentosa extract prevents MPTP-induced Parkinsonism in C57BL/6 mice via the inhibition of GSK-3 phosphorylation and oxidative stress. Nutrients. https://doi.org/10.3390/nu11020252

Article  PubMed  PubMed Central  Google Scholar 

Chen TJ, Feng Y, Liu T et al (2020) Fisetin regulates gut microbiota and exerts neuroprotective effect on mouse model of Parkinson’s disease. Front Neurosci 14:549037. https://doi.org/10.3389/fnins.2020.549037

Article  PubMed  PubMed Central  Google Scholar 

Chonpathompikunlert P, Boonruamkaew P, Sukketsiri W et al (2018) The antioxidant and neurochemical activity of Apium graveolens L. and its ameliorative effect on MPTP-induced Parkinson-like symptoms in mice. BMC Complement Altern Med 181:103. https://doi.org/10.1186/s12906-018-2166-0

Article  CAS  Google Scholar 

Chu C, Li T, Yu L et al (2023a) A low-protein, high-carbohydrate diet exerts a neuroprotective effect on mice with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson’s disease by regulating the microbiota-metabolite-brain axis and fibroblast growth factor 21. J Agric Food Chem 7123:8877–8893. https://doi.org/10.1021/acs.jafc.2c07606

Article  CAS  Google Scholar 

Chu C, Yu L, Li Y et al (2023b) Lactobacillus plantarum CCFM405 against rotenone-induced Parkinson’s disease mice via regulating gut microbiota and branched-chain amino acids biosynthesis. Nutrients 157:1737. https://doi.org/10.3390/nu15071737

Article  CAS  Google Scholar 

Cilia R, Ko JH, Cho SS et al (2010) Reduced dopamine transporter density in the ventral striatum of patients with Parkinson’s disease and pathological gambling. Neurobiol Dis 391:98–104. https://doi.org/10.1016/j.nbd.2010.03.013

Article  CAS  Google Scholar 

ClinicalTrials.gov. National Library of Medicine. https://clinicaltrials.gov/.

Devos D, Lebouvier T, Lardeux B et al (2013) Colonic inflammation in Parkinson’s disease. Neurobiol Dis 50:42–48. https://doi.org/10.1016/j.nbd.2012.09.007

Article  CAS  PubMed  Google Scholar 

Dong XL, Wang X, Liu F et al (2020) Polymannuronic acid prevents dopaminergic neuronal loss via brain–gut–microbiota axis in Parkinson’s disease model. Int J Biol Macromol 164:994–1005. https://doi.org/10.1016/j.ijbiomac.2020.07.180

Article  CAS  PubMed  Google Scholar 

Du Y, Gao X-R, Peng L et al (2020) Crosstalk between the microbiota–gut–brain axis and depression. Heliyon 66:e04097. https://doi.org/10.1016/j.heliyon.2020.e04097

Article  Google Scholar 

Dunnill C, Patton T, Brennan J et al (2017) Reactive oxygen species (ROS) and wound healing: the functional role of ROS and emerging ROS-modulating technologies for augmentation of the healing process. Int Wound J 141:89–96. https://doi.org/10.1111/iwj.12557

Article  Google Scholar 

Elgayar SAM, Hussein OA, Mubarak HA et al (2022) Testing efficacy of the nicotine protection of the substantia nigra pars compacta in a rat Parkinson disease model. Ultrastructure study. Ultrastruct Pathol 461:37–53. https://doi.org/10.1080/01913123.2021.2015499

Article  CAS  Google Scholar 

El-Sayed RM, Abdelaziz AM, Zaki HF et al (2023) Cilostazol novel neuroprotective mechanism against rotenone-induced Parkinson’s disease in rats: correlation between Nrf2 and HMGB1/TLR4/PI3K/Akt/mTOR signaling. Int Immunopharmacol 117:109986. https://doi.org/10.1016/j.intimp.2023.109986

Article  CAS  PubMed  Google Scholar 

Forsyth CB, Shannon KM, Kordower JH et al (2011) Increased intestinal permeability correlates with sigmoid mucosa alpha-synuclein staining and endotoxin exposure markers in early Parkinson’s disease. PLoS ONE 612:e28032. https://doi.org/10.1371/journal.pone.0028032

Article 

留言 (0)

沒有登入
gif