Metabolic dysfunction and the development of physical frailty: an aging war of attrition

Fried L, et al. Frailty in older adults: evidence for a phenotype. J Gerontol. 2001;56:M146–57.

Article  CAS  Google Scholar 

Fried L, et al. The physical frailty syndrome as a transition from homeostatic symphony to cacophony. Nat Aging. 2021;1:36–46.

Article  PubMed  PubMed Central  Google Scholar 

Alvarez-Rodriguez L, et al. Aging is associated with circulating cytokine dysregulation. Cell Immunol. 2012;273(2):124–32.

Article  PubMed  CAS  Google Scholar 

Ferrucci L, et al. The origins of age-related proinflammatory state. Blood. 2005;105(6):2294–9.

Article  PubMed  CAS  Google Scholar 

Furman D, et al. Chronic inflammation in the etiology of disease across the life span. Nat Med. 2019;25:1822–32.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Gries K, Trappe S. The aging athlete: paradigm of healthy aging. Int J Sports Med. 2022;8:661–78.

Google Scholar 

Judge A, Dodd M. Metabolism. Essays Biochem. 2020;64:607–47.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Meigs J, et al. The natural history of progression from normal glucose tolerance to type 2 diabetes in the Baltimore Longitudinal Study of Aging. Diabetes. 2003;52:1475–84.

Article  PubMed  CAS  Google Scholar 

DeFronzo R, et al. The effect of insulin on the disposal of intravenous glucose: results from indirect calorimetry and hepatic and femoral venous catheterization. Diabetes. 1981;30:1000–7.

Article  PubMed  CAS  Google Scholar 

Gaster M, et al. Direct evidence of fiber type-dependent GLUT-4 expression in human skeletal muscle. Am J Physiol Endocrinol Metab. 2000;278:E910–6.

Article  PubMed  CAS  Google Scholar 

Houmard JA, et al. Skeletal muscle GLUT4 protein concentration and aging in humans. Diabetes. 1995;44(5):555–60.

Article  PubMed  CAS  Google Scholar 

Santos J, et al. The effect of age on glucose uptake and GLUT1 and GLUT4 expression in rat skeletal muscle. Cell Biochem Funct. 2012;30:191–7.

Article  PubMed  Google Scholar 

Murgia M, et al. Single muscle fiber proteomics reveals fiber-type-specific features of human muscle aging. Cell Rep. 2017;19(11):1–15.

Article  Google Scholar 

Egan B, Zierath JR. Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metab. 2013;17(2):162–84.

Article  PubMed  CAS  Google Scholar 

Cox J, et al. Effect of aging on response to exercise training in humans: skeletal muscle GLUT-4 and insulin sensitivity. J Appl Physiol. 1999;86:2019–25.

Article  PubMed  CAS  Google Scholar 

Kalyani R, et al. Frailty status and altered glucose-insulin dynamics. J Gerontol. 2012;67:1300–6.

Article  Google Scholar 

Walston J, et al. Frailty and activation of the inflammation and coagulation systems with and without clinical comorbidities: results from the Cardiovascular Health Study. Arch Intern Med. 2002;162:2333–41.

Article  PubMed  Google Scholar 

Shoemaker M, et al. Differences in muscle energy metabolism and metabolic flexibility between sarcopenic and nonsarcopenic older adults. J Cachexia Sarcopenia Muscle. 2022;13:1224–37.

Article  PubMed  PubMed Central  Google Scholar 

Mutlu A, Duffy J, Wang M. Lipid metabolism and lipid signals in aging and longevity. Dev Cell. 2021;56:1394–407.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Baba M, et al. The impact of the blood lipids levels on arterial stiffness. J Cardiovasc Dev Dis. 2023;10:1–20.

Google Scholar 

Li X, et al. Lipid metabolism dysfunction induced by age-dependent DNA methylation accelerates aging. Signal Transduct Target Ther. 2022;7:1–12.

PubMed  PubMed Central  Google Scholar 

Johnson A, Stolzing A. The role of lipid metabolism in aging, lifespan regulation, and age-related disease. Aging Cell. 2019;18:e13048.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Andreux P, et al. Mitochondrial function is impaired in the skeletal muscle of pre-frail elderly. Sci Rep. 2018;8:8548.

Article  PubMed  PubMed Central  Google Scholar 

Rattray N, et al. Metabolic dysregulation in vitamin E and carnitine shuttle energy mechanisms associate with human frailty. Nat Commun. 2019;10:5027.

Article  PubMed  PubMed Central  Google Scholar 

Malaguarnera G, et al. Carnitine serum levels in frail older adults. Nutrients. 2020;12:3887.

Article  PubMed  PubMed Central  Google Scholar 

Hoek M, et al. Intramuscular short-chain acylcarnitines in elderly people are decreased in (pre-)frail females, but not in males. FASEB J. 2020;34:11658–71.

Article  PubMed  Google Scholar 

Malaguarnera G, et al. Acetyl-L-carnitine slows the progression from prefrailty to frailty in older subjects: a randomized interventional clinical trial. Curr Pharm Design. 2022;28:3158–66.

Article  CAS  Google Scholar 

Badrasawi M et al. Efficacy of L-carnitine supplementation on frailty status and its biomarkers, nutritional status, and physical and cognitive function among prefrail older adults: a double-blind, randomized, placebo-controlled clinical trial. Clin Interv Aging. 2016;1675–1686.

Crentsil V. Mechanistic contribution of carnitine deficiency to geriatric frailty. Ageing Res Rev. 2010;9:265–8.

Article  PubMed  CAS  Google Scholar 

López-Otín C, et al. The hallmarks of aging. Cell. 2013;153:1194–217.

Article  PubMed  PubMed Central  Google Scholar 

López-Otín C, et al. Hallmarks of aging: an expanding universe. Cell. 2023;186:243–78.

Article  PubMed  Google Scholar 

Ubaida-Mohein C, et al. Discovery proteomics in aging human skeletal muscle finds change in spliceosome, immunity, proteostasis and mitochondria. Elife. 2019;8:e49874.

Article  Google Scholar 

Ubaida-Mohein C, et al. Unbiased proteomics, histochemistry, and mitochondrial DNA copy number reveal better mitochondrial health in muscle of high-functioning octogenarians. Elife. 2022;11:e74335.

Article  Google Scholar 

Zampino M, et al. Poor mitochondrial health and systemic inflammation? Test of a classic hypothesis in the Baltimore Longitudinal Study of Aging. Geroscience. 2020;42:1175–82.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Liu F, et al. Association of mitochondrial function, substrate utilization, and anaerobic metabolism with age-related perceived fatigability. J Gerontol A Biol Sci Med Sci. 2020;76:426–33.

Article  PubMed Central  Google Scholar 

Randle P. Regulatory interactions between lipids and carbohydrates: the glucose fatty acid cycle after 35 years. Diabetes Metab Rev. 1998;14:263–83.

Article  PubMed  CAS 

留言 (0)

沒有登入
gif