Associations of plasma proteomics and age-related outcomes with brain age in a diverse cohort

Franke K, Gaser C. Ten years of BrainAGE as a neuroimaging biomarker of brain aging: what insights have we gained? Front Neurol. 2019;10:789.

Article  PubMed  PubMed Central  Google Scholar 

Cole JH. Neuroimaging-derived brain-age: an ageing biomarker? Aging (Albany NY). 2017;9(8):1861–2.

Article  PubMed  Google Scholar 

Cole JH, Franke K. Predicting age using neuroimaging: innovative brain ageing biomarkers. Trends Neurosci. 2017;40(12):681–90.

Article  CAS  PubMed  Google Scholar 

Niu X, et al. Improved prediction of brain age using multimodal neuroimaging data. Hum Brain Mapp. 2020;41(6):1626–43.

Article  PubMed  Google Scholar 

Cole JH, et al. Brain age and other bodily ‘ages’: implications for neuropsychiatry. Mol Psychiatry. 2019;24(2):266–81.

Article  PubMed  Google Scholar 

Higgins-Chen AT, Thrush KL, Levine ME. Aging biomarkers and the brain. Semin Cell Dev Biol. 2021;116:180–93.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gaser C, et al. BrainAGE in mild cognitive impaired patients: predicting the conversion to Alzheimer’s disease. PLoS ONE. 2013;8(6):e67346.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cole JH, et al. Brain age predicts mortality. Mol Psychiatry. 2018;23(5):1385–92.

Article  CAS  PubMed  Google Scholar 

Ning K, et al. Association of relative brain age with tobacco smoking, alcohol consumption, and genetic variants. Sci Rep. 2020;10(1):10.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Johnson AA, et al. Systematic review and analysis of human proteomics aging studies unveils a novel proteomic aging clock and identifies key processes that change with age. Ageing Res Rev. 2020;60:101070.

Article  CAS  PubMed  Google Scholar 

Lehallier B, et al. Data mining of human plasma proteins generates a multitude of highly predictive aging clocks that reflect different aspects of aging. Aging Cell. 2020;19(11):e13256.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tanaka T, et al. Plasma proteomic signature of age in healthy humans. Aging Cell. 2018;17(5):e12799.

Article  PubMed  PubMed Central  Google Scholar 

Moaddel R, et al. Proteomics in aging research: a roadmap to clinical, translational research. Aging Cell. 2021;20(4):e13325.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Landino K, et al. Characterization of the plasma proteomic profile of frailty phenotype. Geroscience. 2021;43(2):1029–37.

Article  CAS  PubMed  Google Scholar 

Tanaka T, Basisty N, Fantoni G, Candia J, Moore AZ, Biancotto A, et al. Plasma proteomic biomarker signature of age predicts health and life span. Elife. 2020;9:e61073.

Tanaka T, Ferrucci L. Editorial: A golden age of aging biomarker discovery. J Nutr Health Aging. 2022;26(6):543–4.

Article  CAS  PubMed  Google Scholar 

Sathyan S, et al. Plasma proteomic profile of frailty. Aging Cell. 2020;19(9):e13193.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Osawa Y, et al. Plasma proteomic signature of the risk of developing mobility disability: a 9-year follow-up. Aging Cell. 2020;19(4):e13132.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Walker KA, et al. Large-scale plasma proteomic analysis identifies proteins and pathways associated with dementia risk. Nature Aging. 2021;1:473–89.

Article  PubMed  PubMed Central  Google Scholar 

Walker KA, et al. Proteomics analysis of plasma from middle-aged adults identifies protein markers of dementia risk in later life. Sci Transl Med. 2023;15(705):eadf5681.

Article  CAS  PubMed  Google Scholar 

Shi L, et al. Identification of plasma proteins relating to brain neurodegeneration and vascular pathology in cognitively normal individuals. Alzheimers Dement (Amst). 2021;13(1):e12240.

Article  PubMed  Google Scholar 

Harris SE, et al. Neurology-related protein biomarkers are associated with cognitive ability and brain volume in older age. Nat Commun. 2020;11(1):800.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Casanova R, et al. Is an MRI-derived anatomical measure of dementia risk also a measure of brain aging? Geroscience. 2023;45(1):439–50.

Article  CAS  PubMed  Google Scholar 

Zhou H, Hastie T. Regularization and variable selection via the elastic net. J R Statist Soc B. 2005;67:301–20.

Article  Google Scholar 

Casanova R, et al. High dimensional classification of structural MRI Alzheimer’s disease data based on large scale regularization. Frontiers of Neuroscience in Neuroinformatics. 2011;5:22.

Google Scholar 

Casanova R, et al. Classification of structural MRI images in Alzheimer’s disease from the perspective of ill-posed problems. PLoS One. 2012;7(10):e44877.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Casanova R, Hsu FC, Sink KM, Rapp SR, Williamson JD, Resnick SM, et al. Alzheimer’s disease risk assessment using large-scale machine learning methods. PLoS One. 2013;8(11):e77949. https://doi.org/10.1371/journal.pone.0077949

Knopman DS, et al. Mild cognitive impairment and dementia prevalence: the Atherosclerosis Risk in Communities Neurocognitive Study (ARIC-NCS). Alzheimers Dement (Amst). 2016;2:1–11.

Article  PubMed  Google Scholar 

Casanova R, et al. Using high-dimensional machine learning methods to estimate an anatomical risk factor for Alzheimer’s disease across imaging databases. Neuroimage. 2018;183:401–11.

Article  PubMed  Google Scholar 

Casanova R, et al. Comparing data-driven and hypothesis-driven MRI-based predictors of cognitive impairment in individuals from the Atherosclerosis Risk in Communities (ARIC) study. Alzheimers Dement. 2022;18(4):561–71.

Kucharska-Newton AM, et al. Operationalizing frailty in the Atherosclerosis Risk in Communities study cohort. J Gerontol A Biol Sci Med Sci. 2017;72(3):382–8.

PubMed  Google Scholar 

Casanova R, et al. Alzheimer’s disease risk assessment using large-scale machine learning methods. PLoS ONE. 2013;8(11):e77949.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Casanova R, et al. High dimensional classification of structural MRI Alzheimer’s disease data based on large scale regularization. Front Neuroinform. 2011;5:22.

Article  PubMed  PubMed Central  Google Scholar 

Friedman J, et al. Pathwise coordinate optimization. The Annals of Applied Statistics. 2007;1(2):302–32.

Article  Google Scholar 

Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear models via coordinate descent. J Stat Softw. 2010;33(1):1–22.

Article  PubMed  PubMed Central  Google Scholar 

Hastie T, Tibshirani R, Friedman J. The elements of statistical learning: data mining, inference, and prediction. 2nd ed. Springer Series on Statistics. New York: Springer; 2009. 

留言 (0)

沒有登入
gif