Functional deterioration of vascular mitochondrial and glycolytic capacity in the aortic rings of aged mice

Ungvari Z, Tarantini S, Donato AJ, Galvan V, Csiszar A. Mechanisms of vascular aging. Circ Res. 2018;123:849–67. https://doi.org/10.1161/CIRCRESAHA.118.311378.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lakatta EG, Levy D. Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: part I: aging arteries: a “set up” for vascular disease. Circulation. 2003;107:139–46. https://doi.org/10.1161/01.CIR.0000048892.83521.58.

Article  PubMed  Google Scholar 

Campisi J, Kapahi P, Lithgow GJ, Melov S, Newman JC, Verdin E. From discoveries in ageing research to therapeutics for healthy ageing. Nature. 2019;571:183–92. https://doi.org/10.1038/s41586-019-1365-2.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tyrrell DJ, Blin MG, Song J, Wood SC, Goldstein DR. Aging impairs mitochondrial function and mitophagy and elevates interleukin 6 within the cerebral vasculature. J Am Heart Assoc 2020;9. https://doi.org/10.1161/JAHA.120.017820.

Fleenor BS, Seals DR, Zigler ML, Sindler AL. Superoxide-lowering therapy with TEMPOL reverses arterial dysfunction with aging in mice. Aging Cell. 2012;11:269–76. https://doi.org/10.1111/j.1474-9726.2011.00783.x.

Article  CAS  PubMed  Google Scholar 

LaRocca TJ, Hearon CM, Henson GD, Seals DR. Mitochondrial quality control and age-associated arterial stiffening. Exp Gerontol. 2014;58:78–82. https://doi.org/10.1016/j.exger.2014.07.008.

Article  CAS  PubMed  Google Scholar 

Tyrrell DJ, Blin MG, Song J, Wood SC, Zhang M, Beard DA, et al. Age-associated mitochondrial dysfunction accelerates atherogenesis. Circ Res. 2020;126:298–314. https://doi.org/10.1161/CIRCRESAHA.119.315644.

Article  CAS  PubMed  Google Scholar 

Gioscia-Ryan RA, LaRocca TJ, Sindler AL, Zigler MC, Murphy MP, Seals DR. Mitochondria-targeted antioxidant (MitoQ) ameliorates age-related arterial endothelial dysfunction in mice. J Physiol. 2014;592:2549–61. https://doi.org/10.1113/jphysiol.2013.268680.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wilson C, Lee MD, Buckley C, Zhang X, McCarron JG. Mitochondrial ATP production is required for endothelial cell control of vascular tone. Function. 2023;4:zqac063. https://doi.org/10.1093/function/zqac063.

Article  PubMed  Google Scholar 

Culic O, Gruwel ML, Schrader J. Energy turnover of vascular endothelial cells. Am J Physiol-Cell Physiol. 1997;273:C205–13. https://doi.org/10.1152/ajpcell.1997.273.1.C205.

Article  CAS  Google Scholar 

De Bock K, Georgiadou M, Schoors S, Kuchnio A, Wong BW, Cantelmo AR, et al. Role of PFKFB3-driven glycolysis in vessel sprouting. Cell. 2013;154:651–63. https://doi.org/10.1016/j.cell.2013.06.037.

Article  CAS  PubMed  Google Scholar 

Oldendorf WH, Cornford ME, Brown WJ. The large apparent work capability of the blood-brain barrier: a study of the mitochondrial content of capillary endothelial cells in brain and other tissues of the rat. Ann Neurol. 1977;1:409–17. https://doi.org/10.1002/ana.410010502.

Article  CAS  PubMed  Google Scholar 

Song Y, Shen H, Schenten D, Shan P, Lee PJ, Goldstein DR. Aging enhances the basal production of IL-6 and CCL2 in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol. 2012;32:103–9. https://doi.org/10.1161/ATVBAHA.111.236349.

Article  CAS  PubMed  Google Scholar 

Donato AJ, Eskurza I, Silver AE, Levy AS, Pierce GL, Gates PE, et al. Direct evidence of endothelial oxidative stress with aging in humans: relation to impaired endothelium-dependent dilation and upregulation of nuclear factor-κB. Circ Res. 2007;100:1659–66. https://doi.org/10.1161/01.RES.0000269183.13937.e8.

Article  CAS  PubMed  Google Scholar 

Foote K, Reinhold J, Yu EPK, Figg NL, Finigan A, Murphy MP, et al. Restoring mitochondrial DNA copy number preserves mitochondrial function and delays vascular aging in mice. Aging Cell. 2018;17:e12773. https://doi.org/10.1111/acel.12773.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Horimatsu T, Blomkalns AL, Ogbi M, Moses M, Kim D, Patel S, et al. Niacin protects against abdominal aortic aneurysm formation via GPR109A independent mechanisms: role of NAD1/nicotinamide. Cardiovasc Res. 2020;116:2226–38. https://doi.org/10.1093/cvr/cvz303.

Article  CAS  PubMed  Google Scholar 

Mateuszuk Ł, Campagna R, Kutryb-zając B, Kuś K, Słominska EM, Smolenski RT, et al. Reversal of endothelial dysfunction by nicotinamide mononucleotide via extracellular conversion to nicotinamide riboside. Biochem Pharmacol. 2020;178:114019. https://doi.org/10.1016/j.bcp.2020.114019.

Article  CAS  PubMed  Google Scholar 

Yoshino J, Mills KF, Yoon MJ, Imai S. Nicotinamide mononucleotide, a key NAD+ intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice. Cell Metab. 2011;14:528–36. https://doi.org/10.1016/j.cmet.2011.08.014.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Feeley KP, Westbrook DG, Bray AW, Ballinger SW. An ex-vivo model for evaluating bioenergetics in aortic rings. Redox Biol. 2014;2:1003–7. https://doi.org/10.1016/j.redox.2014.08.008.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kutryb-Zajac B, Kawecka A, Caratis F, Urbanowicz K, Braczko A, Furihata T, et al. The impaired distribution of adenosine deaminase isoenzymes in multiple sclerosis plasma and cerebrospinal fluid. Front Mol Neurosci. 2022;15:998023. https://doi.org/10.3389/fnmol.2022.998023.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Smolenski RT, Lachno DR, Ledingham SJM, Yacoub MH. Determination of sixteen nucleotides, nucleosides and bases using high-performance liquid chromatography and its application to the study of purine metabolism in hearts for transplantation. J Chromatogr B Biomed Sci App. 1990;527:414–20. https://doi.org/10.1016/S0378-4347(00)82125-8.

Article  CAS  Google Scholar 

Swierczyński J, Słomińska E, Smoleński RT, Mayer D. Increase in NAD but not ATP and GTP concentrations in rat liver by dehydroepiandrosterone feeding. Pol J Pharmacol. 2001;53:125–30.

PubMed  Google Scholar 

Bar A, Kieronska‐Rudek A, Proniewski B, Suraj‐Prażmowska J, Czamara K, Marczyk B, et al. In vivo magnetic resonance imaging‐based detection of heterogeneous endothelial response in thoracic and abdominal aorta to short‐term high‐fat diet ascribed to differences in perivascular adipose tissue in mice. J Am Heart Assoc 2020;9. https://doi.org/10.1161/JAHA.120.016929.

Pandian K, Huang L, Junaid A, Harms AC, Van Zonneveld AJ, Hankemeier T. Tracer-based metabolomics for profiling nitric oxide metabolites in a 3D microvessel-on-a-chip model. Cell Biol; 2023. https://doi.org/10.1101/2023.12.03.569402.

Noga MJ, Dane A, Shi S, Attali A, Van Aken H, Suidgeest E, et al. Metabolomics of cerebrospinal fluid reveals changes in the central nervous system metabolism in a rat model of multiple sclerosis. Metabolomics. 2012;8:253–63. https://doi.org/10.1007/s11306-011-0306-3.

Article  CAS  PubMed  Google Scholar 

Bar A, Targosz-Korecka M, Suraj J, Proniewski B, Jasztal A, Marczyk B, et al. Degradation of glycocalyx and multiple manifestations of endothelial dysfunction coincide in the early phase of endothelial dysfunction before atherosclerotic plaque development in apolipoprotein E/low-density lipoprotein receptor-deficient mice. J Am Heart Assoc 2019;8. https://doi.org/10.1161/JAHA.118.011171.

Berkowicz P, Totoń-Żurańska J, Kwiatkowski G, Jasztal A, Csípő T, Kus K, et al. Accelerated ageing and coronary microvascular dysfunction in chronic heart failure in Tgαq*44 mice. GeroScience. 2023;45:1619–48. https://doi.org/10.1007/s11357-022-00716-y.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stamm P, Oelze M, Steven S, Kröller-Schön S, Kvandova M, Kalinovic S, et al. Direct comparison of inorganic nitrite and nitrate on vascular dysfunction and oxidative damage in experimental arterial hypertension. Nitric Oxide. 2021;113–114:57–69. https://doi.org/10.1016/j.niox.2021.06.001.

Article  CAS  PubMed  Google Scholar 

Ravera S, Podestà M, Sabatini F, Dagnino M, Cilloni D, Fiorini S, et al. Discrete changes in glucose metabolism define aging. Sci Rep. 2019;9:10347. https://doi.org/10.1038/s41598-019-46749-w.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Csiszar A, Tarantini S, Yabluchanskiy A, Balasubramanian P, Kiss T,

留言 (0)

沒有登入
gif