Resistance exercise effects on hippocampus subfield volumes and biomarkers of neuroplasticity and neuroinflammation in older adults with low and high risk of mild cognitive impairment: a randomized controlled trial

Leuner B, Gould E. Structural Plasticity and Hippocampal Function. Annu Rev Psychol. 2010;61:C3. https://doi.org/10.1146/ANNUREV.PSYCH.093008.100359.

Article  Google Scholar 

Eriksson PS, Perfilieva E, Björk-Eriksson T, Alborn AM, Nordborg C, Peterson DA, Gage FH. Neurogenesis in the adult human hippocampus. Nat Med. 1998;4:1313–7. https://doi.org/10.1038/3305.

Article  CAS  PubMed  Google Scholar 

Erickson KI, Voss MW, Prakash RS, Basak C, Szabo A, Chaddock L, Kim JS, Heo S, Alves H, White SM, Wojcicki TR, Mailey E, Vieira VJ, Martin SA, Pence BD, Woods JA, McAuley E, Kramer AF. Exercise training increases size of hippocampus and improves memory. Proc Natl Acad Sci U S A. 2011;108:3017–22. https://doi.org/10.1073/pnas.1015950108.

Article  PubMed  PubMed Central  Google Scholar 

Jurkowski MP, Bettio L, Woo EK, Patten A, Yau SY, Gil-Mohapel J. Beyond the hippocampus and the SVZ: adult neurogenesis throughout the brain. Front Cell Neurosci. 2020. https://doi.org/10.3389/fncel.2020.576444.

Article  PubMed  PubMed Central  Google Scholar 

Shors TJ, Anderson ML, Curlik DM, Nokia MS. Use it or lose it: How neurogenesis keeps the brain fit for learning. Behav Brain Res. 2012. https://doi.org/10.1016/j.bbr.2011.04.023.

Article  PubMed  Google Scholar 

Dawe RJ, Yu L, Arfanakis K, Schneider JA, Bennett DA, Boyle PA. Late-life cognitive decline is associated with hippocampal volume, above and beyond its associations with traditional neuropathologic indices. Alzheimer’s Dement. 2020;16:209–18. https://doi.org/10.1002/ALZ.12009.

Article  Google Scholar 

Wu Y, Bottes S, Fisch R, Zehnder C, Cole JD, Pilz GA, Helmchen F, Simons BD, Jessberger S. Chronic in vivo imaging defines age-dependent alterations of neurogenesis in the mouse hippocampus. Nat Aging. 2023;1–11. https://doi.org/10.1038/s43587-023-00370-9

Jack CR, Petersen RC, Xu Y, O’Brien PC, Smith GE, Ivnik RJ, Boeve BF, Tangalos EG, Kokmen E. Rates of hippocampal atrophy correlate with change in clinical status in aging and AD. Neurology. 2000;55:489. https://doi.org/10.1212/WNL.55.4.484.

Article  Google Scholar 

Apostolova LG, Dutton RA, Dinov ID, Hayashi KM, Toga AW, Cummings JL, Thompson PM. Conversion of mild cognitive impairment to alzheimer disease predicted by hippocampal atrophy maps. Arch Neurol. 2006;63:693–9. https://doi.org/10.1001/ARCHNEUR.63.5.693.

Article  PubMed  Google Scholar 

Apostolova LG, Mosconi L, Thompson PM, Green AE, Hwang KS, Ramirez A, Mistur R, Tsui WH, de Leon MJ. Subregional hippocampal atrophy predicts Alzheimer’s dementia in the cognitively normal. Neurobiol Aging. 2010;31:1088. https://doi.org/10.1016/J.NEUROBIOLAGING.2008.08.008.

Article  Google Scholar 

Costafreda SG, Dinov ID, Tu Z, Shi Y, Liu CY, Kloszewska I, Mecocci P, Soininen H, Tsolaki M, Vellas B, Wahlund LO, Spenger C, Toga AW, Lovestone S, Simmons A. Automated hippocampal shape analysis predicts the onset of dementia in mild cognitive impairment. Neuroimage. 2011;56:212–9. https://doi.org/10.1016/J.NEUROIMAGE.2011.01.050.

Article  PubMed  Google Scholar 

Rössler M, Zarski R, Bohl J, Ohm TG. Stage-dependent and sector-specific neuronal loss in hippocampus during Alzheimer’s disease. Acta Neuropathol. 2002;103:363–9. https://doi.org/10.1007/S00401-001-0475-7.

Article  PubMed  Google Scholar 

West MJ, Coleman PD, Flood DG, Troncoso JC. Differences in the pattern of hippocampal neuronal loss in normal ageing and Alzheimer’s disease. Lancet. 1994;344:769–72. https://doi.org/10.1016/S0140-6736(94)92338-8.

Article  CAS  PubMed  Google Scholar 

Bourgognon J-M, Cavanagh J. The role of cytokines in modulating learning and memory and brain plasticity. Brain Neurosci Adv. 2020;4:239821282097980. https://doi.org/10.1177/2398212820979802.

Article  Google Scholar 

Franceschi C, Bonafè M, Valensin S, Olivieri F, De Luca M, Ottaviani E, De Benedictis G. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann N Y Acad Sci. 2000;908:244–54. https://doi.org/10.1111/j.1749-6632.2000.tb06651.x.

Article  CAS  PubMed  Google Scholar 

Vints WAJ, Levin O, Fujiyama H, Verbunt J, Masiulis N. Exerkines and long-term synaptic potentiation: Mechanisms of exercise-induced neuroplasticity. Front Neuroendocrinol. 2022;66:100993. https://doi.org/10.1016/J.YFRNE.2022.100993.

Article  CAS  PubMed  Google Scholar 

Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, Medrano EE, Linskens M, Rubelj I, Pereira-Smith O, Peacocke M, Campisi J. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A. 1995;92:9363–7. https://doi.org/10.1073/pnas.92.20.9363.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barrientos RM, Kitt MM, Watkins LR, Maier SF. Neuroinflammation in the normal aging hippocampus. Neuroscience. 2015. https://doi.org/10.1016/j.neuroscience.2015.03.007.

Article  PubMed  Google Scholar 

Cleeland C, Pipingas A, Scholey A, White D. Neurochemical changes in the aging brain: A systematic review. Neurosci Biobehav Rev. 2019. https://doi.org/10.1016/j.neubiorev.2019.01.003.

Article  PubMed  Google Scholar 

Tumati S, Martens S, Aleman A. Magnetic resonance spectroscopy in mild cognitive impairment: systematic review and meta-analysis. Neurosci Biobehav Rev. 2013;37:2571–86. https://doi.org/10.1016/J.NEUBIOREV.2013.08.004.

Article  PubMed  Google Scholar 

Vints WAJ, Kušleikienė S, Sheoran S, Šarkinaitė M, Valatkevičienė K, Gleiznienė R, Kvedaras M, Pukėnas K, Himmelreich U, Česnaitienė VJ, Levin O, Verbunt J, Masiulis N. Inflammatory blood biomarker kynurenine is linked with elevated neuroinflammation and neurodegeneration in older adults: evidence from two 1H-MRS post-processing analysis methods. Front Psychiatry. 2022;13:859772. https://doi.org/10.3389/FPSYT.2022.859772.

Article  PubMed  PubMed Central  Google Scholar 

Waragai M, Moriya M, Nojo T. Decreased n-acetyl aspartate/myo-inositol ratio in the posterior cingulate cortex shown by magnetic resonance spectroscopy may be one of the risk markers of preclinical alzheimer’s disease: a 7-year follow-up study. J Alzheimer’s Dis. 2017;60:1411–27. https://doi.org/10.3233/JAD-170450.

Article  CAS  Google Scholar 

Graff-Radford J, Kantarci K. Magnetic resonance spectroscopy in Alzheimer’s disease. Neuropsychiatr Dis Treat. 2013;9:687–96. https://doi.org/10.2147/NDT.S35440.

Article  PubMed  PubMed Central  Google Scholar 

Voevodskaya O, Sundgren PC, Strandberg O, Zetterberg H, Minthon L, Blennow K, Wahlund LO, Westman E, Hansson O. Myo-inositol changes precede amyloid pathology and relate to APOE genotype in Alzheimer disease. Neurology. 2016;86:1754–61. https://doi.org/10.1212/WNL.0000000000002672.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jack CR, Holtzman DM. Biomarker modeling of alzheimer’s disease. Neuron. 2013;80:1347–58. https://doi.org/10.1016/J.NEURON.2013.12.003.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Solvang SEH, Nordrehaug JE, Tell GS, Nygård O, McCann A, Ueland PM, Midttun Ø, Meyer K, Vedeler CA, Aarsland D, Refsum H, Smith AD, Giil LM. The kynurenine pathway and cognitive performance in community-dwelling older adults. The Hordaland Health Study. Brain Behav Immun. 2019;75:155–62. https://doi.org/10.1016/j.bbi.2018.10.003.

Article  CAS  PubMed  Google Scholar 

Allison DJ, Josse AR, Gabriel DA, Klentrou P, Ditor DS. Targeting inflammation to influence cognitive function following spinal cord injury: A randomized clinical trial. Spinal Cord. 2017;55:26–32. https://doi.org/10.1038/sc.2016.96.

Article  CAS  PubMed  Google Scholar 

Van Praag H. Neurogenesis and exercise: past and future directions. Neuromolecular Med. 2008;10:128–40. https://doi.org/10.1007/S12017-008-8028-Z.

Article  PubMed  Google Scholar 

Pedersen BK, Steensberg A, Fischer C, Keller C, Keller P, Plomgaard P, Febbraio M, Saltin B. Searching for the exercise factor: Is IL-6 a candidate?, in: Journal of Muscle Research and Cell Motility. J Muscle Res Cell Motil 2003;113–119. https://doi.org/10.1023/A:1026070911202

Pedersen BK. Physical activity and muscle–brain crosstalk. Nat Rev Endocrinol. 2019. https://doi.org/10.1038/s41574-019-0174-x.

Article  PubMed  Google Scholar 

Agudelo LZ, Femenía T, Orhan F, Porsmyr-Palmertz M, Goiny M, Martinez-Redondo V, Correia JC, Izadi M, Bhat M, Schu

留言 (0)

沒有登入
gif