Epigenetic control of skeletal muscle atrophy

Yin L, Li N, Jia W, Wang N, Liang M, Yang X, Du G. Skeletal muscle atrophy: from mechanisms to treatments. Pharmacol Res. 2021;172: 105807.

Article  CAS  PubMed  Google Scholar 

Sartori R, Romanello V, Sandri M. Mechanisms of muscle atrophy and hypertrophy: implications in health and disease. Nat Commun. 2021;12(1):330.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Furrer R, Handschin C. Muscle wasting diseases: novel targets and treatments. Annu Rev Pharmacol Toxicol. 2019;59:315–39.

Article  CAS  PubMed  Google Scholar 

Davegardh C, Sall J, Benrick A, Broholm C, Volkov P, Perfilyev A, Henriksen TI, Wu Y, Hjort L, Brons C, et al. VPS39-deficiency observed in type 2 diabetes impairs muscle stem cell differentiation via altered autophagy and epigenetics. Nat Commun. 2021;12(1):2431.

Article  PubMed  PubMed Central  Google Scholar 

Bilgic SN, Domaniku A, Toledo B, Agca S, Weber BZC, Arabaci DH, Ozornek Z, Lause P, Thissen JP, Loumaye A, et al. EDA2R-NIK signalling promotes muscle atrophy linked to cancer cachexia. Nature. 2023;617(7962):827–34.

Article  CAS  PubMed  Google Scholar 

Mercuri E, Sumner CJ, Muntoni F, Darras BT, Finkel RS. Spinal muscular atrophy. Nat Rev Dis Primers. 2022;8(1):52.

Article  PubMed  Google Scholar 

Wilkinson DJ, Piasecki M, Atherton PJ. The age-related loss of skeletal muscle mass and function: measurement and physiology of muscle fibre atrophy and muscle fibre loss in humans. Ageing Res Rev. 2018;47:123–32.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jin Y, Song Y, Lin J, Liu T, Li G, Lai B, Gu Y, Chen G, Xing L. Role of inflammation in neurological damage and regeneration following spinal cord injury and its therapeutic implications. Burns Trauma. 2023;11:tkac054.

Article  PubMed  PubMed Central  Google Scholar 

Zhang J, Gao Y, Yan J. Roles of myokines and muscle-derived extracellular vesicles in musculoskeletal deterioration under disuse conditions. Metabolites. 2024;14(2):88.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bodine SC, Latres E, Baumhueter S, Lai VK, Nunez L, Clarke BA, Poueymirou WT, Panaro FJ, Na E, Dharmarajan K, et al. Identification of ubiquitin ligases required for skeletal muscle atrophy. Science. 2001;294(5547):1704–8.

Article  CAS  PubMed  Google Scholar 

Gomes MD, Lecker SH, Jagoe RT, Navon A, Goldberg AL. Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy. Proc Natl Acad Sci USA. 2001;98(25):14440–5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Qiu J, Zhu J, Zhang R, Liang W, Ma W, Zhang Q, Huang Z, Ding F, Sun H. miR-125b-5p targeting TRAF6 relieves skeletal muscle atrophy induced by fasting or denervation. Ann Transl Med. 2019;7(18):456.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Qaisar R, Bhaskaran S, Van Remmen H. Muscle fiber type diversification during exercise and regeneration. Free Radic Biol Med. 2016;98:56–67.

Article  CAS  PubMed  Google Scholar 

Wang Y, Pessin JE. Mechanisms for fiber-type specificity of skeletal muscle atrophy. Curr Opin Clin Nutr Metab Care. 2013;16(3):243–50.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ciciliot S, Rossi AC, Dyar KA, Blaauw B, Schiaffino S. Muscle type and fiber type specificity in muscle wasting. Int J Biochem Cell Biol. 2013;45(10):2191–9.

Article  CAS  PubMed  Google Scholar 

Talbot J, Maves L. Skeletal muscle fiber type: using insights from muscle developmental biology to dissect targets for susceptibility and resistance to muscle disease. Wiley Interdiscip Rev Dev Biol. 2016;5(4):518–34.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kahn RE, Dayanidhi S, Lacham-Kaplan O, Hawley JA. Molecular clocks, satellite cells, and skeletal muscle regeneration. Am J Physiol Cell Physiol. 2023;324(6):C1332–40.

Article  CAS  PubMed  Google Scholar 

Chervu A, Moore WS, Chvapil M, Henderson T. Efficacy and duration of antistaphylococcal activity comparing three antibiotics bonded to Dacron vascular grafts with a collagen release system. J Vasc Surg. 1991;13(6):897–901.

Article  CAS  PubMed  Google Scholar 

Choo CS, Chen Y, McHoney M. Delayed versus early repair of inguinal hernia in preterm infants: a systematic review and meta-analysis. J Pediatr Surg. 2022;57(11):527–33.

Article  PubMed  Google Scholar 

Hernandez-Hernandez JM, Garcia-Gonzalez EG, Brun CE, Rudnicki MA. The myogenic regulatory factors, determinants of muscle development, cell identity and regeneration. Semin Cell Dev Biol. 2017;72:10–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Goldberg AD, Allis CD, Bernstein E. Epigenetics: a landscape takes shape. Cell. 2007;128(4):635–8.

Article  CAS  PubMed  Google Scholar 

Fitz-James MH, Cavalli G. Molecular mechanisms of transgenerational epigenetic inheritance. Nat Rev Genet. 2022;23(6):325–41.

Article  CAS  PubMed  Google Scholar 

Bianconi V, Mozzetta C. Epigenetic control of muscle stem cells: time for a new dimension. Trends Genet. 2022;38(5):501–13.

Article  CAS  PubMed  Google Scholar 

Dilworth FJ, Blais A. Epigenetic regulation of satellite cell activation during muscle regeneration. Stem Cell Res Ther. 2011;2(2):18.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sahinyan K, Blackburn DM, Simon MM, Lazure F, Kwan T, Bourque G, Soleimani VD. Application of ATAC-Seq for genome-wide analysis of the chromatin state at single myofiber resolution. Elife. 2022;11: e72792.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Allis CD, Jenuwein T. The molecular hallmarks of epigenetic control. Nat Rev Genet. 2016;17(8):487–500.

Article  CAS  PubMed  Google Scholar 

Zhao LY, Song J, Liu Y, Song CX, Yi C. Mapping the epigenetic modifications of DNA and RNA. Protein Cell. 2020;11(11):792–808.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kottakis F, Nicolay BN, Roumane A, Karnik R, Gu H, Nagle JM, Boukhali M, Hayward MC, Li YY, Chen T, et al. LKB1 loss links serine metabolism to DNA methylation and tumorigenesis. Nature. 2016;539(7629):390–5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Moore LD, Le T, Fan G. DNA methylation and its basic function. Neuropsychopharmacology. 2013;38(1):23–38.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif