Isselbacher EM (2005) Thoracic and abdominal aortic aneurysms. Circulation 111(6):816–828. https://doi.org/10.1161/01.CIR.0000154569.08857.7A
Gianfagna F, Veronesi G, Bertu L, Tozzi M, Tarallo A, Ferrario MM, Castelli P, Ro CAVPI (2016) Prevalence of abdominal aortic aneurysms and its relation with cardiovascular risk stratification: protocol of the Risk of cardiovascular diseases and abdominal aortic Aneurysm in Varese (RoCAV) population based study. BMC Cardiovasc Disord 16(1):243. https://doi.org/10.1186/s12872-016-0420-2
Article CAS PubMed PubMed Central Google Scholar
Rodrigues Bento J, Meester J, Luyckx I, Peeters S, Verstraeten A, Loeys B (2022) The genetics and typical traits of thoracic aortic aneurysm and dissection. Annu Rev Genomics Hum Genet 23:223–253. https://doi.org/10.1146/annurev-genom-111521-104455
Article CAS PubMed Google Scholar
Ruddy JM, Jones JA, Spinale FG, Ikonomidis JS (2008) Regional heterogeneity within the aorta: relevance to aneurysm disease. J Thorac Cardiovasc Surg 136(5):1123–1130. https://doi.org/10.1016/j.jtcvs.2008.06.027
Article PubMed PubMed Central Google Scholar
Lu H, Du W, Ren L, Hamblin MH, Becker RC, Chen YE, Fan Y (2021) Vascular smooth muscle cells in aortic aneurysm: from genetics to mechanisms. J Am Heart Assoc 10(24):e023601. https://doi.org/10.1161/JAHA.121.023601
Article CAS PubMed PubMed Central Google Scholar
Petsophonsakul P, Furmanik M, Forsythe R, Dweck M, Schurink GW, Natour E, Reutelingsperger C, Jacobs M, Mees B, Schurgers L (2019) Role of vascular smooth muscle cell phenotypic switching and calcification in aortic aneurysm formation. Arterioscler Thromb Vasc Biol 39(7):1351–1368. https://doi.org/10.1161/ATVBAHA.119.312787
Article CAS PubMed Google Scholar
Sun J, Deng H, Zhou Z, Xiong X, Gao L (2018) Endothelium as a potential target for treatment of abdominal aortic aneurysm. Oxid Med Cell Longev 2018:6306542. https://doi.org/10.1155/2018/6306542
Article CAS PubMed PubMed Central Google Scholar
van de Pol V, Kurakula K, DeRuiter MC, Goumans MJ (2017) Thoracic aortic aneurysm development in patients with bicuspid aortic valve: what is the role of endothelial cells? Front Physiol 8:938. https://doi.org/10.3389/fphys.2017.00938
Article PubMed PubMed Central Google Scholar
Kalucka J, de Rooij L, Goveia J, Rohlenova K, Dumas SJ, Meta E, Conchinha NV, Taverna F, Teuwen LA, Veys K, Garcia-Caballero M, Khan S, Geldhof V, Sokol L, Chen R, Treps L, Borri M, de Zeeuw P, Dubois C, Karakach TK, Falkenberg KD, Parys M, Yin X, Vinckier S, Du Y, Fenton RA, Schoonjans L, Dewerchin M, Eelen G, Thienpont B, Lin L, Bolund L, Li X, Luo Y, Carmeliet P (2020) Single-cell transcriptome atlas of murine endothelial cells. Cell 180(4):764-779e720. https://doi.org/10.1016/j.cell.2020.01.015
Article CAS PubMed Google Scholar
Aird WC (2012) Endothelial cell heterogeneity. Cold Spring Harb Perspect Med 2(1):a006429. https://doi.org/10.1101/cshperspect.a006429
Article PubMed PubMed Central Google Scholar
Simmons CA, Zilberberg J, Davies PF (2004) A rapid, reliable method to isolate high quality endothelial RNA from small spatially-defined locations. Ann Biomed Eng 32(10):1453–1459. https://doi.org/10.1114/b:abme.0000042360.57960.2b
Hirsch EZ, Martino W, Orr CH, White H, Chisolm GM 3rd (1980) A simple rapid method for the preparation of en face endothelial (Hautchen) monolayers from rat and rabbit aortas. Atherosclerosis 37(4):539–548. https://doi.org/10.1016/0021-9150(80)90061-1
Article CAS PubMed Google Scholar
Henriques TA, Huang J, D’Souza SS, Daugherty A, Cassis LA (2004) Orchidectomy, but not ovariectomy, regulates angiotensin II-induced vascular diseases in apolipoprotein E-deficient mice. Endocrinology 145(8):3866–3872. https://doi.org/10.1210/en.2003-1615
Article CAS PubMed Google Scholar
Trachet B, Fraga-Silva RA, Jacquet PA, Stergiopulos N, Segers P (2015) Incidence, severity, mortality, and confounding factors for dissecting AAA detection in angiotensin II-infused mice: a meta-analysis. Cardiovasc Res 108(1):159–170. https://doi.org/10.1093/cvr/cvv215
Article CAS PubMed Google Scholar
Simon A, von Einem T, Seidinger A, Matthey M, Bindila L, Wenzel D (2022) The endocannabinoid anandamide is an airway relaxant in health and disease. Nat Commun 13(1):6941. https://doi.org/10.1038/s41467-022-34327-0
Article CAS PubMed PubMed Central Google Scholar
Biederbick C, Heinemann JC, Rieck S, Winkler F, Ottersbach A, Schiffer M, Duerr GD, Eberbeck D, Hesse M, Roll W, Wenzel D (2023) Combined use of magnetic microbeads for endothelial cell isolation and enhanced cell engraftment in myocardial repair. Theranostics 13(3):1150–1164. https://doi.org/10.7150/thno.75871
Article CAS PubMed PubMed Central Google Scholar
Vosen S, Rieck S, Heidsieck A, Mykhaylyk O, Zimmermann K, Bloch W, Eberbeck D, Plank C, Gleich B, Pfeifer A, Fleischmann BK, Wenzel D (2016) Vascular repair by circumferential cell therapy using magnetic nanoparticles and tailored magnets. ACS Nano 10(1):369–376. https://doi.org/10.1021/acsnano.5b04996
Article CAS PubMed Google Scholar
Vosen S, Rieck S, Heidsieck A, Mykhaylyk O, Zimmermann K, Plank C, Gleich B, Pfeifer A, Fleischmann BK, Wenzel D (2016) Improvement of vascular function by magnetic nanoparticle-assisted circumferential gene transfer into the native endothelium. J Control Release 241:164–173. https://doi.org/10.1016/j.jconrel.2016.09.024
Article CAS PubMed Google Scholar
Fels B, Beyer A, Cazana-Perez V, Giraldez T, Navarro-Gonzalez JF, Alvarez de la Rosa D, Schaefer F, Bayazit AK, Obrycki L, Ranchin B, Holle J, Querfeld U, Kusche-Vihrog K (2022) Effects of chronic kidney disease on nanomechanics of the endothelial glycocalyx are mediated by the mineralocorticoid receptor. Int J Mol Sci. https://doi.org/10.3390/ijms231810659
Article PubMed PubMed Central Google Scholar
Vahldieck C, Cianflone E, Fels B, Loning S, Depelmann P, Sabatino J, Salerno N, Karsten CM, Torella D, Weil J, Sun D, Goligorsky MS, Kusche-Vihrog K (2023) Endothelial glycocalyx and cardiomyocyte damage is prevented by recombinant syndecan-1 in acute myocardial infarction. Am J Pathol 193(4):474–492. https://doi.org/10.1016/j.ajpath.2022.12.009
Article CAS PubMed PubMed Central Google Scholar
Manohar S, Camacho-Magallanes A, Echeverria C Jr, Rogers CD (2020) Cadherin-11 Is required for neural crest specification and survival. Front Physiol 11:563372. https://doi.org/10.3389/fphys.2020.563372
Article PubMed PubMed Central Google Scholar
Holler KL, Hendershot TJ, Troy SE, Vincentz JW, Firulli AB, Howard MJ (2010) Targeted deletion of Hand2 in cardiac neural crest-derived cells influences cardiac gene expression and outflow tract development. Dev Biol 341(1):291–304. https://doi.org/10.1016/j.ydbio.2010.02.001
Article CAS PubMed PubMed Central Google Scholar
Tomarev SI, Nakaya N (2009) Olfactomedin domain-containing proteins: possible mechanisms of action and functions in normal development and pathology. Mol Neurobiol 40(2):122–138. https://doi.org/10.1007/s12035-009-8076-x
Article CAS PubMed PubMed Central Google Scholar
O’Donnell M, Hong CS, Huang X, Delnicki RJ, Saint-Jeannet JP (2006) Functional analysis of Sox8 during neural crest development in Xenopus. Development 133(19):3817–3826. https://doi.org/10.1242/dev.02558
Article CAS PubMed Google Scholar
Devotta A, Hong CS, Saint-Jeannet JP (2018) Dkk2 promotes neural crest specification by activating Wnt/beta-catenin signaling in a GSK3beta independent manner. Elife. https://doi.org/10.7554/eLife.34404
留言 (0)