The angiogenic role of the alpha 9-nicotinic acetylcholine receptor in triple-negative breast cancers

Lugano R, Ramachandran M, Dimberg A (2020) Tumor angiogenesis: causes, consequences, challenges and opportunities. Cell Mol Life Sci 77(9):1745–1770

Article  CAS  PubMed  Google Scholar 

Behelgardi MF et al (2020) Targeting signaling pathways of VEGFR1 and VEGFR2 as a potential target in the treatment of breast cancer. Mol Biol Rep 47(3):2061–2071

Article  Google Scholar 

Takahashi H, Shibuya M (2005) The vascular endothelial growth factor (VEGF)/VEGF receptor system and its role under physiological and pathological conditions. Clin Sci (Lond) 109(3):227–241

Article  CAS  PubMed  Google Scholar 

Chung AS, Lee J, Ferrara N (2010) Targeting the tumour vasculature: insights from physiological angiogenesis. Nat Rev Cancer 10(7):505–514

Article  CAS  PubMed  Google Scholar 

Zhang S et al (2017) Immunoglobulin-like domain 4-mediated ligand-independent dimerization triggers VEGFR-2 activation in HUVECs and VEGFR2-positive breast cancer cells. Breast Cancer Res Treat 163(3):423–434

Article  CAS  PubMed  Google Scholar 

Jinesh GG et al (2017) Surface PD-L1, E-cadherin, CD24, and VEGFR2 as markers of epithelial cancer stem cells associated with rapid tumorigenesis. Sci Rep. https://doi.org/10.1038/s41598-017-08796-z

Article  PubMed  PubMed Central  Google Scholar 

Luo M et al (2016) VEGF/NRP-1axis promotes progression of breast cancer via enhancement of epithelial-mesenchymal transition and activation of NF-kappaB and beta-catenin. Cancer Lett 373(1):1–11

Article  CAS  PubMed  Google Scholar 

Zhao D et al (2015) VEGF drives cancer-initiating stem cells through VEGFR-2/Stat3 signaling to upregulate Myc and Sox2. Oncogene 34(24):3107–3119

Article  CAS  PubMed  Google Scholar 

Zhu X, Zhou W (2015) The emerging regulation of VEGFR-2 in triple-negative breast cancer. Front Endocrinol (Lausanne) 6:159

Article  PubMed  Google Scholar 

Riquelme E et al (2014) VEGF/VEGFR-2 upregulates EZH2 expression in lung adenocarcinoma cells and EZH2 depletion enhances the response to platinum-based and VEGFR-2-targeted therapy. Clin Cancer Res 20(14):3849–3861

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lu-Emerson C et al (2015) Lessons from anti-vascular endothelial growth factor and anti-vascular endothelial growth factor receptor trials in patients with glioblastoma. J Clin Oncol 33(10):1197–1213

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mahfouz N et al (2017) Gastrointestinal cancer cells treatment with bevacizumab activates a VEGF autoregulatory mechanism involving telomerase catalytic subunit hTERT via PI3K-AKT, HIF-1alpha and VEGF receptors. PLoS ONE 12(6):e0179202

Article  PubMed  PubMed Central  Google Scholar 

Zhong ZY et al (2017) Circular RNA MYLK as a competing endogenous RNA promotes bladder cancer progression through modulating VEGFA/VEGFR2 signaling pathway. Cancer Lett 403:305–317

Article  CAS  PubMed  Google Scholar 

Pengcheng S et al (2017) MicroRNA-497 suppresses renal cell carcinoma by targeting VEGFR-2 in ACHN cells. Biosci Rep. https://doi.org/10.1042/BSR20170270

Jang K et al (2017) VEGFA activates an epigenetic pathway upregulating ovarian cancer-initiating cells. EMBO Mol Med 9(3):304–318

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu KS et al (2017) Apatinib promotes autophagy and apoptosis through VEGFR2/STAT3/BCL-2 signaling in osteosarcoma. Cell Death Dis 8:e3015

Article  CAS  PubMed  PubMed Central  Google Scholar 

Perrot-Applanat M, Di Benedetto M (2012) Autocrine functions of VEGF in breast tumor cells: adhesion, survival, migration and invasion. Cell Adh Migr 6(6):547–553

Article  PubMed  PubMed Central  Google Scholar 

Heeschen C et al (2001) Nicotine stimulates angiogenesis and promotes tumor growth and atherosclerosis. Nat Med 7(7):833–839

Article  CAS  PubMed  Google Scholar 

Heeschen C et al (2002) A novel angiogenic pathway mediated by non-neuronal nicotinic acetylcholine receptors. J Clin Invest 110(4):527–536

Article  CAS  PubMed  PubMed Central  Google Scholar 

Albuquerque EX et al (2009) Mammalian nicotinic acetylcholine receptors: from structure to function. Physiol Rev 89(1):73–120

Article  CAS  PubMed  Google Scholar 

Fasoli F, Gotti C (2015) Structure of neuronal nicotinic receptors. Curr Top Behav Neurosci 23:1–17

Article  CAS  PubMed  Google Scholar 

Le Novere N, Corringer PJ, Changeux JP (2002) The diversity of subunit composition in nAChRs: evolutionary origins, physiologic and pharmacologic consequences. J Neurobiol 53(4):447–456

Article  PubMed  Google Scholar 

Govind AP, Walsh H, Green WN (2012) Nicotine-induced upregulation of native neuronal nicotinic receptors is caused by multiple mechanisms. J Neurosci 32(6):2227–2238

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brown KC et al (2013) Nicotine induces the up-regulation of the alpha7-nicotinic receptor (alpha7-nAChR) in human squamous cell lung cancer cells via the Sp1/GATA protein pathway. J Biol Chem 288(46):33049–33059

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shi D et al (2012) Nicotine promotes proliferation of human nasopharyngeal carcinoma cells by regulating alpha7AChR, ERK, HIF-1alpha and VEGF/PEDF signaling. PLoS ONE 7(8):e43898

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ma X et al (2014) alpha5 Nicotinic acetylcholine receptor mediates nicotine-induced HIF-1alpha and VEGF expression in non-small cell lung cancer. Toxicol Appl Pharmacol 278(2):172–179

Article  CAS  PubMed  Google Scholar 

Lee CH et al (2010) Overexpression and activation of the alpha9-nicotinic receptor during tumorigenesis in human breast epithelial cells. J Natl Cancer Inst 102(17):1322–1335

Article  CAS  PubMed  Google Scholar 

Sun Z et al (2020) Differential expression of nicotine acetylcholine receptors associates with human breast cancer and mediates antitumor activity of alphaO-conotoxin GeXIVA. Mar Drugs 18(1):1–61

Article  Google Scholar 

Singh S, Pillai S, Chellappan S (2011) Nicotinic acetylcholine receptor signaling in tumor growth and metastasis. J Oncol 2011:456743

Article  PubMed  PubMed Central  Google Scholar 

Pucci S et al (2021) alpha9-containing nicotinic receptors in cancer. Front Cell Neurosci 15:805123

Article  CAS  PubMed  Google Scholar 

Huang LC et al (2017) Nicotinic acetylcholine receptor subtype alpha-9 mediates triple-negative breast cancers based on a spontaneous pulmonary metastasis mouse model. Front Cell Neurosci 11:336

Article  PubMed  PubMed Central  Google Scholar 

Guha P et al (2014) Nicotine promotes apoptosis resistance of breast cancer cells and enrichment of side population cells with cancer stem cell-like properties via a signaling cascade involving galectin-3, alpha9 nicotinic acetylcholine receptor and STAT3. Breast Cancer Res Treat 145(1):5–22

Article 

留言 (0)

沒有登入
gif